<u>Higher</u>: Quadratic Theory

Revision

	1		
le	5.	When $x^2 + 8x + 3$ is written in the form $(x + p)^2 + q$, what is the value of q ?	
		A -19	
2010 PI		В -13	
7(C -5	
		D 19	
Ans	В		
	6.	The roots of the equation $kx^2 - 3x + 2 = 0$ are equal.	
		What is the value of k ?	
Ia		A $-\frac{9}{8}$	
2010 PI		B $-\frac{8}{9}$	
7(
		$C = \frac{8}{9}$	
		$D = \frac{9}{8}$	
Ans	D		

		h of the following diagrams shows a parabola with equation $y = ax^2 + bx + c$,
2010 P1	where	• a > 0
		$b^2 - 4ac > 0$?
	A	
	В	
	С	
	D	
Ans	В	
	18. W	That is the solution of $x^2 + 4x > 0$, where x is a real number?
		-4 < x < 0
2010 PI		x < -4, x > 0
201		0 < x < 4
		x < 0, x > 4
Ans	В	
	12. A f	function f is given by $f(x) = 2x^2 - x - 9$.
	Wl	nich of the following describes the nature of the roots of $f(x) = 0$?
l bI	A	No real roots
2009 P.I	В	Equal roots
	C	Real distinct roots
	D	Rational distinct roots

Ans	С		
2009 P1	19.	For what values of x is $6 + x - x^2 < 0$?	
		A $x > 3$ only	
		B $x \le -2$ only	
20		C $x < -2, x > 3$	
		D $-3 < x < 2$	
Ans	С		
	10.	Here are two statements about the roots of the equation $x^2 + x + 1 = 0$:	
		(1) the roots are equal;	
		(2) the roots are real.	
2008 P.I		Which of the following is true?	
2008		A Neither statement is correct.	
		B Only statement (1) is correct.	2
		C Only statement (2) is correct.	
		D Both statements are correct.	
Ans	A		
	13.	The diagram shows part of the graph of a quadratic function $y = f(x)$.	
		The graph has an equation of the form $y = k(x - a)(x - b)$.	
		\mathcal{Y} \uparrow	
		$\int_{V} v = f(x)$	
		$\int y = f(x)$	
		Λ	
I			
2008 P.I			
200			
		$O \mid 1 \setminus f \mid 4 \mid x$	
			2
		What is the equation of the graph?	
		A y = 3(x-1)(x-4)	
		B y = 3(x+1)(x+4)	
		C $y = 12(x-1)(x-4)$	
		D $y = 12(x+1)(x+4)$	
Ans	A		
	I		

2008 PI	16.	WhAABC	nat is the v 5 7 9	d in the form 2(a	$(c+p)^2+q$.	2
		D	11			
Ans	A					

2007 PI	4. Find the range of values of k such that the equation $kx^2 - x - 1 = 0$ has no real roots.	4
Ans	$k < \frac{1}{4}$	
2006 PI	 8. (a) Express 2x² + 4x - 3 in the form a(x + b)² + c. (b) Write down the coordinates of the turning point on the parabola with equation y = 2x² + 4x - 3. 	3
Ans	(a) $2(x+1)^2 - 5$ (b) $(-1, -5)$	
2006 P2	2. Find the value of k such that the equation $kx^2 + kx + 6 = 0$, $k \ne 0$, has equal roots.	4
Ans	k = 24	

2004 P2	3. Prove that the roots of the equation $2x^2 + px - 3 = 0$ are real for all values of p.	4
Ans	$b^2 - 4ac = p^2 - 4 \times 2 \times (-3)$ = $p^2 + 24$ p^2 is positive, so $b^2 - 4ac$ is positive too and roots are real.	
2003 PI	 (a) Write f(x) = x² + 6x + 11 in the form (x + a)² + b. (b) Hence or otherwise sketch the graph of y = f(x). 	2 2
Ans	(a) $(x + 3)^2 + 2$ (b) $(0, 11)$	
2003 PI	7. Show that the line with equation $y = 2x + 1$ does not intersect the parabola with equation $y = x^2 + 3x + 4$.	5
Ans	$x^{2} + 3x + 4 = 2x + 1$ $x^{2} + x + 3 = 0$ $b^{2} - 4ac = -11$ $b^{2} - 4ac < 0 \text{ therefore no intersection}$	
2002W P2	6. The graph of $f(x) = 2x^3 - 5x^2 - 3x + 1$ has been sketched in the diagram shown. Find the value of a correct to one decimal place. $y = f(x)$ $y = f(x)$	3
Ans	Evaluate $f(0.1)$ and $f(0.5)$, for example, to start with $a = 0.2$	
2002 PI	7. (a) Express $f(x) = x^2 - 4x + 5$ in the form $f(x) = (x - a)^2 + b$.	2
Ans	(a) f(x) = (x-2) + 1	
2002 P2	9. Show that the equation $(1-2k)x^2 - 5kx - 2k = 0$ has real roots for all integer values of k .	5

	1						
	discriminant = $(-5k)^2 - 4(1-2k)(-2k)$						
	$=9k^2+8k$						
	for real roots, discriminant ≥ 0						
	ie $9k^2 + 8k \ge 0$						
Ans	$k(9k+8) \ge 0$						
	$k \ge 0$ or $k \le \frac{-8}{9}$						
	no integers between 0 and $\frac{-8}{9}$						
	hence no integral values of k						
	give non - real roots						
2001 PI	2. For what value of k does the equation $x^2 - 5x + (k + 6) = 0$ have equal roots?	3					
Ans	$k = \frac{1}{4}$						
PI	4. Given $f(x) = x^2 + 2x - 8$, express $f(x)$ in the form $(x + a)^2 - b$.	2					
2001 PI							
Ans	$(x+1)^2 - 9$						
11115							
	11. The diagram shows a sketch of a parabola passing through (-1, 0),						
	(0, p) and $(p, 0)$.						
2001 P2	(a) Show that the equation of the						
500	parabola is $y = p + (p-1)x - x^2$.	3					
	(b) For what value of p will the $(-1,0)$ $(p,0)$						
	line $y = x + p$ be a tangent to $ I O x$ this curve?	3					
	this curve:						
	(a) y = k(x+1)(x-p)						
	k = -1 with justification ie substitute $(0,p)$						
Ans	y = -1(x+1)(x-p) and com-						
	plete						
	(b) 2						
	y ↑						
	4. The parabola shown crosses the x -axis						
	at $(0, 0)$ and $(4, 0)$, and has a maximum						
) P2	at (2, 4).						
2000 P2	The shaded area is bounded by the						
	parabola, the x-axis and the lines $x = 2$ and $x = k$.						
	(a) Find the equation of the parabola. O $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & k & 4 & k \end{pmatrix}$	2					
Ans	$(a) y = 4x - x^2$						

