2. Algebra 1 - Basic Algebraic operations, Indices and Surds

Evaluation

1. Evaluate $30-3 p^{2} q$ where $p=-1$ and $q=-6 \quad 2 \mathrm{KU}$

Simplification

2. Simplify $4(3 x-2)-5(4 x+1)$

3 KU
3 Remove the brackets and collect like terms $\quad(3 a-b)(2 a-5 b) \quad 2 \mathrm{KU}$
4. Remove the brackets and simplify your answer $(2 x-1)(x+3)+(x-4)^{2} \quad 4 \mathrm{KU}$
5. Remove the brackets and simplify $(3 y-4)^{2}$
6. Multiply out the brackets and simplify. $(2 x-3)\left(3 x^{2}+4 x-1\right)$

Factorisation

7. Factorise $6 x^{2}-9 x$
8. Factorise $4 a^{2}-9 b^{2}$

2 KU
9. a) Factorise the expression $9 x^{2}-y^{2}$

1 KU
b) Hence simplify $\frac{6 x+2 y}{9 x^{2}-y^{2}}$

2 KU
10. a) Factorise $a^{2}-9 b^{2}$

1 KU
b) Hence simplify $\frac{a^{2}-9 b^{2}}{2 a+6 b}$
11. a) Factorise $x^{2}-9$
b) Express $\frac{4(5 x+3)}{25 x^{2}-9}$ in its simplest form
12. Express $\frac{15 x-20}{9 x^{2}-16}$ in its simplest form
13. i) Factorise completely $2 x^{2}-6 x \quad 1 \mathrm{KU}$
ii) Express $\frac{2 x^{2}-6 x}{x^{2}-9}$ in its simplest form.
14. Factorise $3 x^{2}-13 x-10$

Solve Linear Equations

15. Solve the equation $5-2(1+3 x)=27 \quad 3 \mathrm{KU}$
16. Solve the equation $5+3 a=a-15$

Simultaneous Equations

17. Solve algebraically, the system of equations

$$
\begin{aligned}
& 2 a+4 b=-7 \\
& 3 a-5 b=17
\end{aligned}
$$

18. Solve the system of equations $\begin{aligned} & 5 a+3 b=9 \\ & 7 a-2 b=25\end{aligned}$

Functions

1. $f(x)=x^{2}-2 x, \quad$ evaluate $f(-2)$
2. $h(t)=15 t-3 t^{2} \quad$ Find $h(-2)$
3. Given that $f(x)=\frac{x^{3}+x^{2}+2}{5 x-1}$ evaluate $f(-3)$
4. $f(x)=9-6 x$
(a) Evaluate $f(-3)$
1 KU
(b) Given that $f(\mathrm{t})=11$, find t
5. The function $f(x)$ is given by the formula $f(x)=3 x^{2}-7$, where x is a real number.
(a) Find the value of $f(-2)$.
(b) Find the values of a for which $f(a)=20$.
6. $\quad f(x)=\frac{4}{x^{2}}$ find $f\left(\frac{1}{2}\right)$
7. $f(x)=3^{x}$
a) Find $f(4)$
1 KU
b) Given that $f(x)=\sqrt{27}$, find x.
8. $\quad f(x)=\frac{3}{\sqrt{x}} \quad$ Find the exact value of $f(2)$ Give your answer as a fraction with a rational denominator.
9. $\quad f(x)=3 \sqrt{x} \quad$ Find the exact value of $f(12)$,

Quadratic Equations

1. Solve algebraically, the equation $\quad x^{2}=7 x$
2. Solve algebraically, the equation $6 y-y^{2}=0$
3. Solve algebraically, the equation $2 x^{2}-9 x-5=0$ 3 KU
4.

Solve for $x: \quad 2 x^{2}+7 x-15=0$
3 KU
5. Solve the equation $2 x^{2}+5 x-12=0$
6. Solve the equation $2 p^{2}-p-10=0 \quad$ where p is a real number.
7. Two functions are given below:

$$
\begin{aligned}
& f(x)=x^{2}+2 x-1 \\
& g(x)=5 x+3
\end{aligned}
$$

Find the values of x for which $f(x)=g(x)$
8. Find the two roots of the equation $2 x^{2}-3 x-4=0$
(Answer correct to 1 decimal place).
9. Solve the equation $x^{2}+2 x-6=0$

Give your answers correct to $\mathbf{2}$ significant figures.
5 KU

Inequalities

1. Solve the inequality $8-x>3(2 x+5)$
2. Solve algebraically the inequality $3 y<4-(y+2)$
3. Solve the inequality $3-(x-6)<2 x$

3 KU
4. Solve algebraically the inequality $6 x-2<5(1-3 x) \quad 3 \mathrm{KU}$
5. Solve algebraically, the inequality $2+5 x \geq 8 x-16 \quad 3 \mathrm{KU}$
6. Solve the inequality $2-5(3 x-2) \geq 4(1-3 x)$ where x is a positive integer.
7. An inequality, like $4 x+10 \leq 6 x+2 \leq 3 x+26$, can be solved by
i) solving $4 x+10 \leq 6 x+2$ and solving $6 x+2 \leq 3 x+26$
then ii) looking carefully at the two sets of answers to decide on the correct solution to the original inequality.
a) Solve $3 x+1 \leq 5 x+3 \leq x+23 \quad 4 \mathrm{KU}$
b) Write down the set of all possible solutions where x is an INTEGER. 1 KU

Changing the subject of the formula

1. $Y=\frac{3(2 v-w)}{5}$ Change the subject of the formula to v.
2. $\quad P=\frac{1}{3}(m-s) \quad$ Change the subject of the formula to m
3. $L=8+\frac{6}{Y}$ Change the subject of the formula to Y .
4. Change the subject of the formula to $k . \quad d=\frac{k-m}{t}$
5. $Q=p^{2}+3 T \quad$ Change the subject of the formula to T.
6. $\quad M=R^{2} t-3 \quad$ Change the subject of the formula to R.
7. Change the subject of the formula to $b . \quad A=\sqrt{4 b^{2}-c}$
8.

a) Change the subject of the formula $Q=2 \sqrt{s}+t, \quad$ to $s \quad 3 \mathrm{KU}$
b) Find the value of s when $Q=3.5$ and $t=2.2$

2 KU
9. The frequency, F hertz of the sound you hear as you drive past a factory siren at a speed of v metres per second is given by the formula

$$
F=f\left(1-\frac{v}{s}\right)
$$

where f is the true frequency of the sound emitted by the siren and s is the speed of sound. Change the subject of the above formula to v.

Algebraic Fractions

1. Express as a single fraction in its simplest form $\frac{1}{2 x}-\frac{1}{3 x}, x \neq 0 \quad 2 \mathrm{KU}$
2. Express as a single fraction in its simplest form

$$
\frac{3}{x}+\frac{2-x}{x^{2}}, \quad x \neq 0
$$

3. Express as a single fraction in its simplest form

$$
\frac{5}{x}-\frac{3}{(x-2)}, x \neq 0 \text { or } x \neq 2
$$

Fraction Equations

1. Solve the equation $\frac{2 x+1}{3}-\frac{x}{4}=2$
2. Solve the equation $\frac{x+4}{2}-\frac{2 x+1}{3}=1$, where x is a real number.
3. Solve algebraically the equation $3 x-\frac{(5 x+2)}{4}=3$
4. Solve the equation $\frac{x-3}{2}+\frac{2 x-1}{3}=4$

4 KU
5. Solve this equation for $x: \quad \frac{x-2}{3}-\frac{x}{2}=\frac{1}{4}$
6. Solve algebraically, the equation $\frac{x}{2}-\frac{(x+1)}{3}=4$
7. Solve algebraically, the equation $\frac{m}{3}=\frac{(1-m)}{5}$

Indices

1. Evaluate $27^{\frac{2}{3}} \quad 2 \mathrm{KU}$
2. Express in its simplest form $y^{10} \times\left(y^{4}\right)^{-2} \quad 2 \mathrm{KU}$
3. Simplify $a^{3}\left(a^{-7}+5\right)$
4. \quad Express $\frac{3 y^{5} \times 4 y^{-1}}{6 y}$ in its simplest form.

3 KU
5. Express $\frac{y^{4} \times y}{y^{-2}}$ in its simplest form.
6. Express $\frac{b^{\frac{1}{2}} \times b^{\frac{3}{2}}}{b} \quad$ in its simplest form.
7. Remove the brackets and simplify $b^{\frac{1}{2}}\left(b^{\frac{1}{2}}+b^{-\frac{1}{2}}\right)$ 3 KU
8. Remove the brackets and simplify $\quad a^{\frac{1}{2}}\left(a+\frac{1}{a}\right)$

Surds

1. Express $\sqrt{50}$ as a surd in its simplest form.
2. \quad Simplify $\frac{\sqrt{72}}{\sqrt{3}}$
3. Simplify $\sqrt{48}-3 \sqrt{3}$
4. Express $\sqrt{32}-\sqrt{2}$ as a surd in its simplest form.
5. Express $\sqrt{72}-\sqrt{2}+\sqrt{50}$ as a surd in its simplest form
6. Express $\sqrt{32}+\sqrt{8}$ as a surd in its simplest form.
7. Multiply out the brackets $\sqrt{2}(\sqrt{6}-\sqrt{2})$

Express your answer as a surd in its simplest form.
8. $\quad f(x)=3 \sqrt{x}$

Find the exact value of $f(12)$, giving your answer as a surd, in its simplest form.
9. Express $\frac{3}{\sqrt{5}}$ as a fraction with a rational denominator.
10. Simplify $\frac{\sqrt{3}}{\sqrt{24}}$ Express your answer as a fraction with a rational denominator
11. $\quad f(x)=\frac{3}{\sqrt{x}} \quad$ Find the exact value of $f(2)$

Give your answer as a fraction with a rational denominator.
12. A function f is given by $f(x)=4^{x}$

Find the value of $f\left(\frac{3}{2}\right)$

