2. Algebra 1 – Basic Algebraic operations, Indices and Surds

Evaluation

 $30 - 3p^2q$ where p = -1 and q = -6Evaluate 2 KU 1.

Simplification

2. **Simplify** 4(3x-2)-5(4x+1)3 KU

Remove the brackets and collect like terms (3a-b)(2a-5b)3 2 KU

Remove the brackets and simplify your answer $(2x-1)(x+3)+(x-4)^2$ 4. 4 KU

Remove the brackets and simplify $(3y-4)^2$ 5. 2 KU

Multiply out the brackets and simplify. $(2x-3)(3x^2+4x-1)$ 6. 3 KU

Factorisation

Factorise $6x^2 - 9x$ 7. 2 KU

Factorise $4a^2 - 9b^2$ 8. 2 KU

Factorise the expression $9x^2 - y^2$ 9. 1 KU

Hence simplify $\frac{6x+2y}{9x^2-y^2}$ b) 2 KU

10. a) 1 KU

Factorise $a^2 - 9b^2$ Hence simplify $\frac{a^2 - 9b^2}{2a + 6b}$ b) 2 KU

Factorise $x^2 - 9$ a) 11. 1 KU

Express $\frac{4(5x+3)}{25x^2-9}$ in its simplest form b) 2 KU

Express $\frac{15x-20}{9x^2-16}$ in its simplest form 12. 3 KU

Factorise **completely** $2x^2 - 6x$ 13. i) 1 KU

Express $\frac{2x^2-6x}{x^2-9}$ in its simplest form. ii) 2 KU

Factorise $3x^2 - 13x - 10$ 14. 2 KU

Solve Linear Equations

15. Solve the equation
$$5-2(1+3x) = 27$$

3 KU

16. Solve the equation
$$5+3a=a-15$$

3 KU

Simultaneous Equations

$$2a+4b=-7$$
$$3a-5b=17$$

3 KU

$$5a + 3b = 9$$
$$7a - 2b = 25$$

3 KU

Functions

1.
$$f(x) = x^2 - 2x$$
, evaluate $f(-2)$

2 KU

2.
$$h(t) = 15t - 3t^2$$
 Find $h(-2)$

2 KU

3. Given that
$$f(x) = \frac{x^3 + x^2 + 2}{5x - 1}$$
 evaluate $f(-3)$

3 KU

$$4. \qquad f(x) = 9 - 6x$$

(a) Evaluate
$$f(-3)$$

1 KU

(b) Given that
$$f(t) = 11$$
, find t

2 KU

- 5. The function f(x) is given by the formula $f(x) = 3x^2 7$, where x is a real number.
 - (a) Find the value of f(-2).

2 KU

(b) Find the **values** of a for which
$$f(a) = 20$$
.

3 KU

6.
$$f(x) = \frac{4}{x^2} \quad \text{find} \quad f\left(\frac{1}{2}\right)$$

2 KU

$$7. f(x) = 3^x$$

a) Find
$$f(4)$$

1 KU

b) Given that
$$f(x) = \sqrt{27}$$
, find x.

3 KU

8.
$$f(x) = \frac{3}{\sqrt{x}}$$
 Find the **exact** value of $f(2)$

Give your answer as a fraction with a rational denominator.

2 KU

9.
$$f(x) = 3\sqrt{x}$$
 Find the exact value of $f(12)$,

giving your answer as a surd, in its simplest form.

2 KU

Quadratic Equations

1. Solve **algebraically**, the equation $x^2 = 7x$

3 KU

2. Solve **algebraically**, the equation $6y - y^2 = 0$

2 KU

3. Solve **algebraically**, the equation $2x^2 - 9x - 5 = 0$

3 KU

4. Solve for x: $2x^2 + 7x - 15 = 0$

3 KU

5. Solve the equation $2x^2 + 5x - 12 = 0$

3 KU

6. Solve the equation $2p^2 - p - 10 = 0$ where p is a real number.

3 KU

7. Two functions are given below:

$$f(x) = x^2 + 2x - 1$$
$$g(x) = 5x + 3$$

Find the values of x for which f(x) = g(x)

3 KU

8. Find the two roots of the equation $2x^2 - 3x - 4 = 0$ (Answer correct to 1 decimal place).

4 KU

9. Solve the equation $x^2 + 2x - 6 = 0$ Give your answers correct to 2 significant figures.

5 KU

Inequalities

1. Solve the inequality 8 - x > 3(2x + 5)

3 KU

2. Solve algebraically the inequality 3y < 4 - (y + 2)

3 KU

3. Solve the inequality 3-(x-6) < 2x

3 KU

4. Solve algebraically the inequality 6x-2 < 5(1-3x)

3 KU

5. Solve algebraically, the inequality $2+5x \ge 8x-16$

3 KU

6. Solve the inequality $2-5(3x-2) \ge 4(1-3x)$ where x is a **positive integer**.

5 KU

7. An inequality, like $4x + 10 \le 6x + 2 \le 3x + 26$, can be solved by

i) solving $4x + 10 \le 6x + 2$ and solving $6x + 2 \le 3x + 26$

then ii) looking carefully at the two sets of answers to decide on the correct solution to the original inequality.

a) Solve $3x + 1 \le 5x + 3 \le x + 23$

4 KU

b) Write down the set of **all** possible solutions where x is an INTEGER.

1 KU

Changing the subject of the formula

1.
$$Y = \frac{3(2v - w)}{5}$$
 Change the subject of the formula to v .

2.
$$P = \frac{1}{3}(m-s)$$
 Change the subject of the formula to m

3.
$$L = 8 + \frac{6}{Y}$$
 Change the subject of the formula to Y.

4. Change the subject of the formula to
$$k$$
.
$$d = \frac{k - m}{t}$$
 2 KU

5.
$$Q = p^2 + 3T$$
 Change the subject of the formula to T. 2 KU

6.
$$M = R^2 t - 3$$
 Change the subject of the formula to R .

7. Change the subject of the formula to b.
$$A = \sqrt{4b^2 - c}$$
 3 KU

8. a) Change the subject of the formula
$$Q = 2\sqrt{s} + t$$
, to s 3 KU

b) Find the value of s when
$$Q = 3.5$$
 and $t = 2.2$ 2 KU

$$F = f\left(1 - \frac{v}{s}\right)$$

where f is the true frequency of the sound emitted by the siren and s is the speed of sound. Change the subject of the above formula to v. 3 KU

Algebraic Fractions

- 1. Express as a single fraction in its simplest form $\frac{1}{2x} \frac{1}{3x}$, $x \neq 0$
- 2. Express as a single fraction in its simplest form

$$\frac{3}{x} + \frac{2-x}{x^2}, \quad x \neq 0$$
 3 KU

3. Express as a single fraction in its simplest form

$$\frac{5}{x} - \frac{3}{(x-2)}$$
, $x \neq 0$ or $x \neq 2$ 3 KU

Fraction Equations

1. Solve the equation
$$\frac{2x+1}{3} - \frac{x}{4} = 2$$
 3 KU

2. Solve the equation
$$\frac{x+4}{2} - \frac{2x+1}{3} = 1$$
, where x is a real number.

3. Solve **algebraically** the equation
$$3x - \frac{(5x+2)}{4} = 3$$
 3 KU

4. Solve the equation
$$\frac{x-3}{2} + \frac{2x-1}{3} = 4$$
 4 KU

5. Solve this equation for x:
$$\frac{x-2}{3} - \frac{x}{2} = \frac{1}{4}$$
 4 KU

6. Solve **algebraically**, the equation
$$\frac{x}{2} - \frac{(x+1)}{3} = 4$$
 3 KU

7. Solve **algebraically**, the equation
$$\frac{m}{3} = \frac{(1-m)}{5}$$
 3 KU

Indices

1. Evaluate $27^{\frac{2}{3}}$

2. Express in its simplest form $y^{10} \times (y^4)^{-2}$ 2 KU

3. Simplify $a^3(a^{-7}+5)$ 2 KU

4. Express $\frac{3y^5 \times 4y^{-1}}{6y}$ in its simplest form.

5. Express $\frac{y^4 \times y}{y^{-2}}$ in its simplest form.

6. Express $\frac{b^{\frac{1}{2}} \times b^{\frac{3}{2}}}{b}$ in its simplest form.

7. Remove the brackets and simplify $b^{\frac{1}{2}} \left(b^{\frac{1}{2}} + b^{-\frac{1}{2}} \right)$ 3 KU

8. Remove the brackets and simplify $a^{\frac{1}{2}}\left(a+\frac{1}{a}\right)$ 2 KU

Surds

1. Express $\sqrt{50}$ as a surd in its simplest form.

1 KU

2. Simplify $\frac{\sqrt{72}}{\sqrt{3}}$

2 KU

3. Simplify $\sqrt{48} - 3\sqrt{3}$

2 KU

4. Express $\sqrt{32} - \sqrt{2}$ as a surd in its simplest form.

2 KU

5. Express $\sqrt{72} - \sqrt{2} + \sqrt{50}$ as a surd in its simplest form

3 KU

6. Express $\sqrt{32} + \sqrt{8}$ as a surd in its simplest form.

3 KU

- 7. Multiply out the brackets $\sqrt{2}(\sqrt{6}-\sqrt{2})$
 - Express your answer as a **surd** in its simplest form.

2~KU

- $8. f(x) = 3\sqrt{x}$
 - Find the exact value of f(12), giving your answer as a **surd**, in its simplest form.
- 2 KU

9. Express $\frac{3}{\sqrt{5}}$ as a fraction with a rational denominator.

- 2 KU
- 10. Simplify $\frac{\sqrt{3}}{\sqrt{24}}$ Express your answer as a fraction with a rational denominator
- 3 KU

- 11. $f(x) = \frac{3}{\sqrt{x}}$ Find the **exact** value of f(2)
 - Give your answer **as a fraction** with a rational denominator.

2 KU

- 12. A function f is given by $f(x) = 4^x$
 - Find the value of $f\left(\frac{3}{2}\right)$

2 KU