2011 Mathematics

Intermediate 2 - Units 1, 2 and 3 Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2011
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles

These principles describe the approach to be taken when marking Intermediate 2 Mathematics papers. For more detailed guidance please refer to the notes which are included with the Marking Instructions.

1 Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.

2 The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.

3 The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin \mathrm{x}^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values / algebraic expressions.

4 Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).

5 Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.

6 In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.

7 Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.

8 Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.

9 Do not penalise the same error twice in the same question.
10 A transcription error, where a number has been erroneously transcribed from the examination question, is not normally penalised except where the question has been simplified as a result.

11 Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.

12 When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lower mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1 Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how s/he has awarded marks, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through, if otherwise correct and can be awarded marks, it should be marked with a crossed tick, \mathcal{X}.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Mathematics Intermediate 2: Paper 2, Units 1, 2 and 3

Question No	Marking Scheme Give 1 mark for each •	Illustratio	of eviden mark at	award
1.	Ans: -9/10 - ${ }^{1}$ process: calculate gradient	$\bullet \quad-9 / 10 \times 1$ mark		
NOTES:				
2.	Ans: £147 900 - ${ }^{1}$ strategy: know how to increase by 3.15% - ${ }^{2}$ strategy: know how to calculate expected value - ${ }^{3}$ process: carry out all calculations correctly within a valid strategy - ${ }^{4}$ process: round answer to 4 significant figures	- ${ }^{1} \quad \times 1.03$ - ${ }^{2} \quad 1347$ - ${ }^{3} \quad 1478$ - ${ }^{4} \quad 1479$	$\times 1.0315^{3}$ 2038	4 mar
NOTES:				
1. For an answer of $£ 147900$, with or without working		$(\checkmark \checkmark \checkmark \checkmark)$ award 4/4		
2. For an answer of $£ 147900 \cdot 00$, with or without working			$(\checkmark \checkmark \checkmark x)$ award 3/4	
3. For an answer of $£ 147889 \cdot 2$, with or without working			$(\checkmark \checkmark \checkmark x)$ award 3/4	
4. Where an incorrect percentage has been used, the working must be followed through to give the possibility of awarding 3/4 eg for an answer of $£ 122400\left(134750 \times 0 \cdot 9685^{3}\right)$, with working $\quad(\boldsymbol{\chi} \checkmark \checkmark \checkmark)$ award $3 / 4$				
5. For an answer of $£ 417000(134750 \times 1.0315 \times 3)$, with working			$(\checkmark \times \times \checkmark)$ award $2 / 4$	
6. For an answer of $£ 147500(134750+3 \times 0.0315 \times 134750)$, with working			$(\checkmark \times \times \checkmark)$ award 2/4	
7. For an answer of $£ 12730(134750 \times 0.0315 \times 3)$, with working			$(\boldsymbol{x} \times \times \checkmark)$ award $1 / 4$	

Question No	Marking Scheme Give $\mathbf{1}$ mark for each •	Illustrations of evidence for awarding a mark at each \bullet	
3.	Ans: $\boldsymbol{r}=\sqrt{\frac{\boldsymbol{A}}{4 \pi}}$		
	$\bullet^{1} \quad$ process: start to rearrange formula	\bullet^{1}	$r^{2}=\frac{A}{4 \pi}$
	$\bullet^{2} \quad$ process: make r the subject	$\bullet^{2} \quad r=\sqrt{\frac{A}{4 \pi}}$	$\mathbf{2 ~ m a r k s}$

NOTES:

1. For a correct answer without working award $2 / 2$
2. The second mark is available for taking the square root of an expression for r^{2}
3. For an answer of $r=\frac{\sqrt{A}}{4 \pi}$, with or without working, award $1 / 2$
4. For answers such as
$r=\sqrt{\frac{\frac{A}{4}}{\pi}}$
$r=\sqrt{\frac{A \div 4}{\pi}}$
$r=\sqrt{A \div 4 \div \pi}$
award $1 / 2$

$\begin{array}{\|c\|} \hline \text { Question } \\ \text { No } \\ \hline \end{array}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each -
4. (a)	Ans: 106 cubic metres - ${ }^{1}$ process: substitute correctly into volume formula for cylinder - ${ }^{2}$ process: calculate volume of cylinder	- $\quad \pi \times 1 \cdot 5^{2} \times 15$ - ${ }^{2} \quad 106\left(\mathrm{~m}^{3}\right)$ 2 marks
NOTES:	Accept variations in volume due to variations in the	value of π
(b)	Ans: $\mathbf{1 7 . 4}$ metres - ${ }^{1}$ strategy: know how to find expression for volume of cone - ${ }^{2}$ strategy: know to equate volume of cone with 5.7 - ${ }^{3}$ process: calculate total height of The Pencil	- ${ }^{1} \quad \frac{1}{3} \times \pi \times 1 \cdot 5^{2} \times h$ - ${ }^{2} \quad \frac{1}{3} \times \pi \times 1.5^{2} \times h=5.7$ $\bullet^{3} \quad 17.4(\mathrm{~m})$
NOTES:		

Question No	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
5.	Ans: 25.1 square centimetres - ${ }^{1}$ strategy: know to express sector as fraction of circle - ${ }^{2}$ strategy: know how to find area of sector -3 process: correctly calculate area of sector	- $\quad \frac{54}{360}$ - ${ }^{2} \quad \frac{54}{360} \times \pi \times 7.3^{2}$ - ${ }^{3} \quad 25 \cdot 1(\mathrm{sq} \mathrm{cm})$ 3 marks
NOTES:		
1. Ac 2. For 3. Fo	cept variations in π, disregard premature or incor $\frac{54}{360} \times \pi \times 2 \times 7.3 \text { leading to } 6.9$ the award of the final mark, calculations must in	ct rounding of $\frac{54}{360}$ $(\checkmark \times \checkmark)$ award $2 / 3$ lve a fraction and π

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each -
6. (a) (i) (ii)	(i) Ans: $\bar{x}=\mathbf{4 1}$ (ii) Ans: $s=\mathbf{2 \cdot 1}$ - ${ }^{1}$ process: calculate the mean - ${ }^{1}$ process: calculate $(x-\bar{x})^{2}$ - ${ }^{2}$ process: substitute into formula - ${ }^{3}$ process: calculate standard deviation	- ${ }^{1} \quad 41$ 1 mark - ${ }^{1} 4,4,0,1,4,9$ -2 $\sqrt{\frac{22}{5}}$ - ${ }^{3} \quad 2 \cdot 1$ (disregard rounding)
NOTES: 1. For \square \bullet^{2} ${ }^{3}$ 2. For	use of alternative formula in part (a) (ii), award process: calculate $\sum x$ and $\sum x^{2}$ process: substitute into formula process: calculate standard deviation correct answer, without working	s as follows - 1246 and 10108 -2 $\sqrt{\frac{10108-246^{2} / 6}{5}}$ $\bullet^{3} \quad 2 \cdot 1$
6. (b)	Ans: Yes, with reasons covering both conditions - ${ }^{1}$ communicate: compare mean with the tolerance - ${ }^{2}$ communicate: compare std dev with tolerance	- ${ }^{1}$ Yes, because 41 is between 38 and 42 - ${ }^{2} \quad$ Yes, because $2 \cdot 1$ is less than 3 2 marks
NOTES: 1. Do "Yes "Ye "Ye 2. If, add	not accept: s, because the mean is 41 which is in the range Yes, because the mean is between 38 and 42 ." es, because the standard deviation is less than 3 because of a wrong answer in part (a), the resp ress both conditions to access 2 marks	2." part (b) is "No", the candidate must

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
7. (a)	Ans: $24 x+6 y=60$ - ${ }^{1}$ interpret: interpret the text	-1 $24 x+6 y=60 \quad 1$ mark
(b)	Ans: $20 x+10 y=40$ - ${ }^{1}$ interpret: interpret the text	-120x+10y=40 1 mark
(c)	Ans: 25 points - ${ }^{1}$ strategy: know to solve system of equations \bullet^{2} process: follow a valid strategy through to produce a value for x and y - ${ }^{3}$ process: correct value for x and y - ${ }^{4}$ process: calculate $17 x+13 y$	- ${ }^{1} \quad$ evidence of scaling - \quad a value for x and y - ${ }^{3} \quad x=3, y=-2$ - ${ }^{4} \quad 25$ 4 marks
NOTES:		
1. Incorrect equations in parts (a) and/or (b) must be followed through to give the possibility of awarding 4/4.		
2. Any valid strategy must involve the use of two equations.		
3. Where a candidate writes $24 x-6 y=60$ for part (a), $20 x-10 y=40$ for part (b), leading to $x=3, y=2$ and a final answer of $25, \quad$ award $0 / 1$ for part (a) award $1 / 1$ for part (b) award 4/4 for part (c).		
4. Where the correct values for x and y have been obtained without using simultaneous equations, marks are available only if both values have been substituted correctly into both equations$\text { ie } \begin{aligned} & 24 \times 3+6 \times(-2)=60 \\ & 20 \times 3+10 \times(-2)=40 \\ & \text { leading to } x=3, y=-2 \\ & 17 x+13 y=25 \end{aligned}$		
5. Fo	a correct answer, without working	award 0/4

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each e	Illustrations of evidence for awarding a mark at each -
8.	Ans: $\frac{3}{x-5}$ - ${ }^{1}$ process: factorise numerator \bullet^{2} process: simplify expression correctly	- ${ }^{1} 3(x-5)$ -2 $\frac{3}{x-5}$ 2 marks
NOTES: 1. For a correct answer without working, award $2 / 2$		
9.	Ans: $\frac{3-x}{x(x+1)}$ - ${ }^{1}$ process: state a valid common denominator - ${ }^{2}$ process: find correct numerator of equivalent fraction - process: state answer in simplest form	-1 any valid denominator - ${ }^{2}$ both numerators correct - $\frac{3-x}{x(x+1)}$
NOTES: 1. In this question working subsequent to a correct answer should be ignored. 2. For $\frac{3(x+1)-4 x}{x(x+1)}=\frac{3-x}{x^{2}+1}$ award $3 / 3(\checkmark \checkmark \checkmark)$ 3. For $\frac{3(x+1)-4 x}{x^{2}+1}=\frac{3-x}{x^{2}+1}$ award $2 / 3(\boldsymbol{X} \checkmark \checkmark)$		
10.	Ans: $x=76$ and $x=256$ - ${ }^{1}$ process: solve equation for $\tan x^{0}$ - ${ }^{2}$ process: find one value for x - ${ }^{3}$ process: find second value for x	- $\tan ^{1} x^{\circ}=4$ or equivalent - ${ }^{2} \quad 76$ - 3256
NOTES: 1. Where $\tan x^{0}$ is calculated incorrectly, the working must be followed through with the possibility of awarding $2 / 3$		

Question No	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
11.	Ans: 0.2, 1.6 - ${ }^{1}$ strategy: know to use quadratic formula - ${ }^{2}$ process: correct substitution in formula -3 process: calculate $b^{2}-4 a c$ correctly - ${ }^{4}$ process: state both values of x correct to one decimal place	- ${ }^{1}$ evidence -2 $\frac{7 \pm \sqrt{(-7)^{2}-4 \times 4 \times 1}}{2 \times 4}$ $\cdot{ }^{3} \quad 33$ - ${ }^{4} \quad 0 \cdot 2,1 \cdot 6$

NOTES:

1. Where $b^{2}-4 a c$ is calculated incorrectly, the fourth mark is available only if $b^{2}-4 a c>0$.
2. For a correct answer without working award 0/4.

12.	Ans: 21 centimetres - process: state the size of $\angle \mathrm{BOD}$ and recognise isosceles triangle -2 process: state the size of $\angle \mathrm{ADC}$ - ${ }^{3}$ strategy: know to use the cosine rule in triangle ADC - process: substitute correctly in cosine rule -5 process: calculate AC	- ${ }^{1} 82^{\circ}$ plus evidence of isos. triangle - ${ }^{2} \quad 131^{\circ}$ -3 evidence - $d^{2}=9^{2}+14^{2}-$ $2 \times 9 \times 14 \times \cos 131^{\circ}$ -5 $\quad 21(\mathrm{~cm})$
		5 marks

NOTES:

1. Angle BOD may not be explicitly stated, it may be marked in a diagram and, when evidence of the isosceles triangle is also present, can be awarded the first mark.
2. Angle ADC may not be explicitly stated. It may be marked in a diagram and can be awarded the second mark.
3. Disregard errors due to premature rounding.

$\begin{gathered} \text { Question } \\ \text { No } \end{gathered}$	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
13.	Ans: $\mathbf{2 5 . 1}$ millimetres - ${ }^{1}$ strategy: marshall facts and recognise right-angle - ${ }^{2}$ strategy: use Pythagoras Theorem or equivalent - 3 process: calculate third side correctly - ${ }^{4}$ process: state height	- ${ }^{2} \quad x^{2}=110^{2}-70^{2}$ - 384.9 - $\quad 25 \cdot 1$ (mm)

NOTES:

1. The final mark is for subtracting a calculated value from the radius.
2. Some common answers (with working):
$\sqrt{110^{2}+70^{2}}=130 \cdot 4 \quad$ award $2 / 4$
$110-\sqrt{140^{2}-110^{2}}=23 \cdot 4 \quad$ award $2 / 4$
3. Where a candidate assumes an angle of 45° in the right-angled triangle, only the first and fourth marks are available.

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each -
14.	Ans: Complete proof - ${ }^{1}$ strategy: know to replace $1-\sin ^{2} A$ by $\cos ^{2} A$ -2 strategy: know to use $\frac{\sin A}{\cos A}=\tan A$ to complete proof	- $\frac{\sin ^{2} A}{\cos ^{2} A}$ - ${ }^{2}$ complete proof

NOTES:

1. For $\frac{\sin ^{2} A}{1-\sin ^{2} A}=\tan ^{2} A$
$\frac{\sin ^{2} A}{\cos ^{2} A}=\tan ^{2} A$

$$
\tan ^{2} A=\tan ^{2} A
$$

$$
\text { For } \begin{aligned}
& \frac{\sin ^{2} A}{1-\sin ^{2} A}=\tan ^{2} A \\
& \frac{\sin ^{2} A}{\cos ^{2} A}=\tan ^{2} A
\end{aligned}
$$

TOTAL MARKS FOR PAPER 2

