October 3

1. The diagram shows the graph of $y=f(2 x)-3$.

What are the coordinates of the turning point on the graph of $y=f(x)$?
A. $(12,7)$
B. $(12,1)$
C. $(3,7)$
D. $(3,1)$
2. A function f is defined by $f(x)=\sqrt{x+2}$.

For which values of x is the function f undefined?
A. $x>-2$
B. $x<-2$
C. $x<-1$
D. $x<0$
3. A function f is defined by $f(x)=x^{3}+k x^{2}+2 x$.

Given that $f^{\prime}(2)=26$, what is the value of k ?
A. 3
B. $\frac{7}{2}$
C. 5
D. 10
4. A quadrilateral has vertices $\mathrm{A}(-1,8), \mathrm{B}(7,12), \mathrm{C}(8,5)$ and $\mathrm{D}(2,-3)$ as shown in the diagram.

(a) Find the equation of diagonal BD.
(b) The equation of diagonal AC is $x+3 y=23$.

Find the coordinates of E , the point of intersection of the diagonals.
(c) (i) Find the equation of the perpendicular bisector of AB .
(ii) Show that this line passes through E.
5. The diagram shows the graph of a cosine function from 0 to π.
(a) State the equation of the graph.
(b) The line with equation $y=-\sqrt{3}$ intersects this graph at point A and B. Find the coordinates of B.

6. Two sequences are defined by these recurrence relations: $u_{n+1}=3 u_{n}-0.4$ with $u_{0}=1, \quad v_{n+1}=0.3 v_{n}+4$ with $v_{0}=1$.
(a) Explain why only one of these sequences approaches a limit as $n \rightarrow \infty$.
(b) Find algebraically the exact value of the limit.
(c) For the other sequence, find
(i) the smallest value of n for which the $n^{\text {th }}$ term exceeds 1000 , and
(ii) the value of that term.

