Further mandatory information on Course coverage

The following gives details of mandatory skills, knowledge and understanding for the National 5 Mathematics Course. Course assessment will involve sampling the skills, knowledge and understanding.

	Algebraic skills The learner will use these alo	gebraic skills and apply them in context				
	Working with algebraic	$\bullet a(bx+c)+d(ex+f)$				
1 -	expressions involving expansion of brackets					
		$ \begin{array}{ccc} \bullet & (ax+b)(cx+a) \\ \bullet & (ax+b)(cx^2+dx+e) \end{array} $				
		where a, b, c, d, e, f are integers \Box				
2 -	Factorising an algebraic expression	 common factor difference of squares trinomials and combinations of these 				
3 -	Completing the square in a quadratic expression with unitary x^2 coefficient					
4.	Reducing an algebraic fraction to its simplest form	a/b where a , b are of the form $(mx+p)^n$ or $(mx+p)(nx+q)$ $b \neq 0$				
5 -	Applying the four operations to algebraic fractions	$\frac{a}{b}*\frac{c}{d}$ where a, b, c, d can be simple constants, variables or expressions. *can be add, subtract, multiply or divide $b \neq 0$, $d \neq 0$				
6-	Determining the equation of a straight line	 ◆ use the formula y-b=m(x-a) or equivalent to find the equation of a straight line, given two points or one point and the gradient of the line ◆ use functional notation ◆ identify gradient and y-intercept from various forms of the equation of a straight line 				
7.	Working with linear equations and inequations	◆ numerical coefficients are rational numbers □ ◆ numerical solutions are rational numbers □				
8-	Working with simultaneous equations	 construct from text graphical solution algebraic solution 				
9.	Changing the subject of a formula	 linear equation equation involving a simple square or square root 				
10-	Recognise and determine the equation of a quadratic function from its graph	Equations of the form $y = kx^2$ and $y = (x + p)^2 + q$ k, p, q are integers (\square)				
11-	Sketching a quadratic function	Equations of the form $y = (ax - m)(bx - n)$ or the form $y = k(x + p)^2 + q$ where $k = 1$ or -1 a, b, m, n, p, q are integers (\Box)				
	Identifying features of a	Identify nature, coordinates of turning point and the				

12 -	quadratic function	equation of the axis of symmetry of a quadratic of the form $y = k(x+p)^2 + q$ where $k = 1$ or -1					
•		p, q are integers (\square)					
13-	Working with quadratic equations	 factorising graphically using the quadratic formula discriminant 					

	Geometric skills					
	The learner will use these geometric skills and apply them in context					
14-	Determining the gradient of a straight line, given two points	$m = \frac{y_2 - y_1}{x_2 - x_1}$				
15-	Calculating the length of arc or the area of a sector of a circle					
16-	Calculating the volume of a standard solid	Sphere, cone, pyramid				
17-	Applying Pythagoras' theorem	Using Pythagoras' theorem in complex situations including converse and 3D				
18-	Applying the properties of shapes to determine an angle involving at least two steps	 quadrilaterals/triangles/polygons/circles relationship in a circle between the centre, chord and perpendicular bisector 				
19-	Using similarity	Interrelationship of length, area and volume				
20-	Working with 2D vectors	Adding or subtracting two-dimensional vectors using directed line segments				
21-	Working with 3D coordinates	Determining coordinates of a point from a diagra representing a 3D object				
22-	Using vector components	Adding or subtracting two- or three-dimensional vectors using components				
		Magnitude of a two or three dimensional vector				

23-	Trigonometric skills The learner will use these trig Working with the graphs of trigonometric functions	onometric skills and apply them in context
24	Working with trigonometric relationships in degrees	 sine, cosine and tangent of angles 0°-360° period related angles solve basic equations identities

Section 24 continued on next page

24 cont.	
25	
26	

	$\tan x = \frac{\sin x}{\cos x}$ $\cos^2 x + \sin^2 x = 1,$
Calculating the area of a triangle using trigonometry	$ Area = \frac{1}{2}ab\sin C $
Using the sine and cosine rules to find a side or angle in a triangle	 sine rule for side and angle cosine rule for side cosine rule for angle
Using bearings with trigonometry	To find a distance or direction

4	מר	•
	•	4
•		Ţ

The learner will use these numerical skills and apply them in context					
Working with surds		simplification			

	•	rationalising denominators
Simplifying expressions using the laws of indices	•	multiplication and division using positive and negative indices including fractions
		$(ab)^m - a^m b^m$

		. ,
? •	•	$(a^m)^n = a^{mn}$
)	•	$a^{m/n} = \sqrt[n]{a^m}$
	۱.	coloulations

	•	calculations using scientific notation
--	---	--

2) (Ž	
Z	,	_	J	

Rounding to a given number of significant figures

Numerical skills

Working with percentages		USO roverso perceptages to selected
Working with percentages	▼	use reverse percentages to calculate an
	1	original quantity
		appreciation including compound interes

depreciation Operations and combinations of operations on

Working with fractions fractions including mixed numbers (Addition, subtraction, multiplication, division)

Forming a linear model

Comparing data sets using

The learner will use these statistical skills and apply them in context Compare data sets using calculated/determined:

> semi-interquartile range standard deviation

Determine the equation of a best-fitting straight line on a scattergraph and use it to estimate y given xfrom a given set of data

Reasoning skills

Statistical skills

statistics

The learner will use mathematical reasoning skills (these can be used in combination or separately)