National 5 Revision Booklet

Expressions and Formula

This revision covers the following topics.

- 1.1 Surds
- 1.2 Indices
- 1.3 Significant Figures

1.1 Surds – This is a non calculator exercise.

Simplify: 1.

a.
$$\sqrt{12}$$

b.
$$\sqrt{20}$$

c.
$$\sqrt{44}$$

d.
$$\sqrt{50}$$

e.
$$\sqrt{300}$$

f.
$$\sqrt{125}$$

g.
$$\sqrt{72}$$

h.
$$\sqrt{450}$$

i.
$$\sqrt{1500}$$

Simplify as far as possible: 2.

a.
$$\sqrt{3} \times \sqrt{8}$$

a.
$$\sqrt{3} \times \sqrt{8}$$
 b. $\sqrt{6} \times \sqrt{12}$ c. $\sqrt{7} \times \sqrt{8}$

c.
$$\sqrt{7} \times \sqrt{8}$$

d.
$$\sqrt{2} \times \sqrt{3} \times \sqrt{5}$$
 e. $\sqrt{8} \times \sqrt{2} \times \sqrt{5}$ f. $\sqrt{3} \times \sqrt{5} \times \sqrt{15}$

$$e. \ \sqrt{8} \times \sqrt{2} \times \sqrt{5}$$

f.
$$\sqrt{3} \times \sqrt{5} \times \sqrt{15}$$

Add or subtract these surds and simplify as far as possible: 3.

a.
$$4\sqrt{3} + 5\sqrt{3}$$

b.
$$6\sqrt{7} - 2\sqrt{7}$$

c.
$$5\sqrt{10} + 7\sqrt{10} - \sqrt{10}$$
 d. $\sqrt{2} + \sqrt{2}$

d.
$$\sqrt{2} + \sqrt{2}$$

e.
$$2\sqrt{3} + 5\sqrt{5} + 6\sqrt{3}$$

f.
$$4\sqrt{3} + 5\sqrt{3}$$

g.
$$\sqrt{72} + 5\sqrt{2}$$

h.
$$\sqrt{75} + \sqrt{108} - \sqrt{3}$$

a.
$$\sqrt{2}(1-\sqrt{2})$$

b.
$$\sqrt{3}(\sqrt{3} + 1)$$

c.
$$\sqrt{2}(3 + \sqrt{6})$$

d.
$$\sqrt{5}(\sqrt{5} + 2)$$

e.
$$\sqrt{5}(\sqrt{200} + \sqrt{50})$$

f.
$$2\sqrt{12}(\sqrt{3} + \sqrt{6})$$

Expand and simplify: 5.

a.
$$(\sqrt{3} + 1)(\sqrt{2} + 6)$$

b.
$$(\sqrt{5} +)(\sqrt{2} - 3)$$

c.
$$(\sqrt{7} - 1)(\sqrt{7} - 3)$$

d.
$$(3\sqrt{3}+8)(5\sqrt{2}+10)$$

e.
$$(\sqrt{2} + 3)^2$$

f.
$$(5-2\sqrt{3})^2$$

6. Rationalise the denominator in each fraction and simplify as far as possible:

a.
$$\frac{4}{\sqrt{3}}$$

b.
$$\frac{6}{\sqrt{2}}$$

c.
$$\frac{20}{\sqrt{8}}$$

d.
$$\frac{8}{5\sqrt{8}}$$

e.
$$\frac{\sqrt{5}}{\sqrt{8}}$$

f.
$$\frac{20}{\sqrt{30}}$$

7. Extensions Work - Use the conjugate to rationalise each denominator:

a.
$$\frac{3}{\sqrt{3}+2}$$

b.
$$\frac{16}{4 - \sqrt{6}}$$

c.
$$\frac{\sqrt{10}}{\sqrt{7}-9}$$

a.
$$\frac{3}{\sqrt{3}+2}$$
 b. $\frac{16}{4-\sqrt{6}}$ c. $\frac{\sqrt{10}}{\sqrt{7}-9}$ d. $\frac{4+\sqrt{5}}{\sqrt{3}+2}$

A rectangle has sides measuring $(2 + \sqrt{5})cm$ and $(3 - \sqrt{3})cm$. 8.

Calculate the area of the rectangle.

The exact area of a rectangle is $2(\sqrt{6} + \sqrt{3})$ square centimetres. 9.

Given that the breadth of the rectangle is $\sqrt{6}cm$, show that the length is equal to $(2 + \sqrt{2})$ cm.

1.2 Indices – This is a non calculator exercise

10. Simplify the following expressions, expressing your answers with positive indices:

$$\mathbf{a}$$
. $\mathbf{y} \times \mathbf{y} \times \mathbf{y}$

a.
$$y \times y \times y$$
 b. $p \times p \times p \times p \times q$ **c.** $a \times a \times b \times b \times a$

c.
$$a \times a \times b \times b \times a$$

d.
$$2^3 \times 2^4$$

e.
$$p^3 \times p^3$$

d.
$$2^3 \times 2^4$$
 e. $p^3 \times p^7$ **f.** $a^3 \times a^{-4}$

g.
$$3 \times y^2 \times 2 \times y$$

g.
$$3 \times y^2 \times 2 \times y$$
 h. $2 \times a^2 \times b^3 \times a^{-1}$ **i.** $y^4 \div y^2$

i.
$$y^4 \div y^2$$

i.
$$4r^8 \div 2r$$

k.
$$d^4 \div d^{-3}$$

i.
$$4r^8 \div 2r$$
 k. $d^4 \div d^{-3}$ **l.** $a^0 \times 6a^3 \div 2a^{-2}$

m.
$$\frac{h^5}{h^2}$$

m.
$$\frac{h^5}{h^2}$$
 n. $\frac{10e^{-3}}{5e^3}$ **0.** $\frac{2p^{-2}}{p^{-6}}$

0.
$$\frac{2p^{-2}}{n^{-6}}$$

p.
$$\frac{a^2 \times 2a^5}{a^4}$$

p.
$$\frac{a^2 \times 2a^5}{a^4}$$
 q. $\frac{w \times w \times w}{p^2 w^4}$ **r.** $\frac{3a^4b^3}{6a^2b^5}$

r.
$$\frac{3a^4b^3}{6a^2b^5}$$

11. Simplify the following expressions, expressing your answers with positive indices:

a.
$$(3^2)^5$$
 b. $(4^{-3})^2$ **c.** $(a^3)^7$ **d.** $(p^4)^{-3}$ **e.** $(d^{-5})^{-2}$

b.
$$(4^{-3})^2$$

c.
$$(a^3)^7$$

d.
$$(p^4)^{-3}$$

f.
$$(a^{1/4})^8$$

g.
$$(y^{\frac{2}{3}})^{\frac{3}{4}}$$

f.
$$(a^{1/4})^8$$
 g. $(y^{\frac{2}{3}})^{\frac{3}{4}}$ **h.** $2(p^{\frac{4}{5}})^{\frac{-5}{2}}$ **i.** $3(c^{-2})^0$ **j.** $(k^{\frac{1}{3}})^{\frac{2}{5}}$

i.
$$3(c^{-2})^0$$

j.
$$(k^{\frac{1}{3}})^{\frac{2}{5}}$$

I.
$$(xy^2)^2$$

m.
$$(2m^3)^3$$

n.
$$(2xy^2)^4$$

k.
$$(ab)^3$$
 l. $(xy^2)^4$ **m.** $(2m^3)^3$ **n.** $(2xy^2)^4$ **o.** $3(a^2b^4)^{\frac{1}{2}}$

12. Express without root signs:

(a)
$$\sqrt[4]{a}$$
 (b) $\sqrt{p^3}$ (c) $\sqrt[3]{x^5}$ (d) $\sqrt[5]{r^2}$

$$\sqrt{p^3}$$

$$(c)$$
 $\sqrt[3]{c}$

(e)
$$\sqrt[a]{b^3}$$

13. Express without root signs (Write with positive indices first where necessary)

$$w^4$$

$$a^{-\frac{3}{4}}$$

$$(e) \quad y^{-\frac{1}{5}}$$

14. Evaluate each of the following without the use of a calculator

- (a) $25^{\frac{1}{2}}$ (b) $8^{\frac{1}{3}}$ (c) $4^{-\frac{1}{2}}$ (d) $16^{-\frac{1}{4}}$ (e) 13^{0} (f) 7^{-1}
- (g) $16^{\frac{3}{2}}$ (h) $27^{\frac{2}{3}}$ (i) $8^{-\frac{4}{3}}$ (j) $(-8)^{\frac{1}{3}}$ (k) $64^{\frac{2}{3}}$ (l) $100^{-\frac{3}{2}}$
- (m) $\left(\frac{1}{2}\right)^{-1}$ (n) $\left(\frac{1}{8}\right)^{\frac{4}{3}}$ (o) $\left(\frac{2}{3}\right)^{3}$ (p) $\left(\frac{1}{2}\right)^{-5}$ (q) $\left(\frac{3}{4}\right)^{-2}$ (r) $\left(\frac{8}{27}\right)^{-\frac{4}{3}}$
- 15. Simplify each of the following by:
 - changing root signs to fractional powers
 - moving x's onto the numerators
 - expanding brackets where necessary
- (a) $x^{\frac{1}{2}}(x^4+1)$ (b) $x^{-\frac{1}{2}}(x^{\frac{3}{2}}-x^2)$ (c) $\frac{1}{x^2}(x^{\frac{1}{2}}+x)$
- (d) $\frac{2}{x^{-3}} \left(x^2 + \frac{1}{x} \right)$ (e) $\frac{1}{\sqrt{x}} \left(x^2 \sqrt{x} \right)$ (f) $\left(x^2 + \frac{1}{x} \right)^2$
- $(g) \qquad \frac{1}{x}\left(\sqrt{x}+x\right) \qquad \qquad (h) \qquad \left(x+\frac{1}{\sqrt{x}}\right)^2 \qquad \qquad (i) \qquad x^{-2}\left(\frac{1}{x}-\sqrt[3]{x}\right)$
- (j) $\frac{x^2+3}{x}$ (k) $\frac{\sqrt{x}-x}{x^2}$ (l) $\frac{(2x+1)^2}{x^{\frac{3}{2}}}$

End of Indices Review

1.3 Significant Figures- This is a non calculator exercise

- 16. Round each number to the amount of significant figures asked:
 - **a.** 5068 (1) **b.** 38383 (2) **c.** 626817 (3) **d.** 0.0649 (1)
- 17. Calculate the following, giving your answers to 2 significant figures:
 - **a.** $\sqrt{14}$ **b.** $\sqrt{0.26}$ **c.** $\sqrt{6^2+4^2}$ **d.** $\sqrt{9^2-2^2}$

End of Significant Figures review.

National 5 Revision Booklet

Expressions and Formula

This revision covers the following topics.

- 2.1 Expanding Brackets
- 2.2 Factorising
- 2.3 Completing the Square
- 2.4 Simplifying Algebraic Fractions
- 2.5 Algebraic Fractions 4 Operations

2.1 Expanding brackets – This is a non calculator exercise

1. Multiply out the bracket(s) below:

(b)
$$-8(6-5x)$$

(b)
$$-8(6-5x)$$
 (c) $3n (n^3 - 2n^2)$

(d)
$$7 + 3 (n - 2)$$

(d)
$$7 + 3 (n - 2)$$
 (e) $(5 - 2y) - 4(2 + 3y)$

Multiply out the bracket(s) below: 2.

(a)
$$(y+2)(y+5)$$
 (b) $(t-3)(t-1)$ (c) $(4x+3)(2x-1)$

(d)
$$(v-1)(v^2+2v+1)$$

(d)
$$(y-1)(y^2+2y+1)$$
 (e) $(m+3)(m^2+3m-2)$ (f) $(x-3)(2x^2-3x-6)$

(f)
$$(x-3)(2x^2-3x-6)$$

Multiply out the bracket(s) below: 3.

(a)
$$(x+5)^2$$

(b)
$$(2c-5)^2$$

(c)
$$(4b - 3c)^2$$

(d)
$$(a + \frac{1}{a})^2$$

(e)
$$(\frac{3}{n} - 4p)^2$$

(f)
$$(x+4)^2 - (x+2)^2$$

End of Expanding brackets review

2.2 Factorising – This is a non calculator exercise

4. Factorise:

(c)
$$a^2 + a$$

(d)
$$6z^2 - 8z$$

(f)
$$15w^2 - 6wx$$

5. Factorise:

(a)
$$c^2 - d^2$$

(b)
$$w^2 - 16$$

(c)
$$81 - e^2$$

(d)
$$a^2 - 100$$

(f)
$$4y^2 - 25$$

(g)
$$9y^2 - 16$$

(h)
$$81x^2 - a^2$$

(i)
$$4w^2 - 9x^2$$

(j)
$$1 - 121k^2$$

(k)
$$64u^2 - 9v^2$$

(I)
$$3a^2 - 12$$

(m)
$$3a^2 - 3b^2$$

(n)
$$3c^2 - 27d^2$$

(o)
$$16y^2 - 36t^2$$

(p)
$$ax^2 - ay^2$$

(q)
$$72 - 2m^2$$

6. Factorise:

(a)
$$a^2 + 3a + 2$$

(b)
$$x^2 + 5x + 6$$

(c)
$$m^2 + 4m - 5$$

(d)
$$w^2 - 6w + 9$$

(e)
$$2w^2 + 3w + 1$$

(f)
$$3y^2 - 4y + 1$$

(g)
$$2x^2 - 7x + 3$$

(h)
$$13u^2 + 7u - 6$$

7. Factorise:

(c)
$$5x^2 - 45$$

(d)
$$x^2 - 4y^2$$

(e)
$$x^2 - 5x - 24$$

(f)
$$x^2 + x - 6$$

(g)
$$a^2 + 2a + b^2$$

End of Factorising review

2.3 Completing the Square – This is a non calculator exercise

8. In parts a - f add a number to make a perfect square:

(a)
$$x^2 + 2x$$

(b)
$$y^2 + 12y$$

(d)
$$w^2 - 20w$$

(f)
$$v^2 - \frac{2}{3}v$$

In parts g - j, write in the form $(x+p)^2 + q$: 9.

(g)
$$x^2 + 6x + 10$$

(h)
$$v^2 - 2v + 3$$

(i)
$$z^2 + 8z - 10$$

(j)
$$m^2 + \frac{1}{2}m + \frac{1}{4}$$

Write in the form $p - (x+q)^2$: (Extension Work)

(a)
$$4 + 2x - x^2$$

(b)
$$5-4x-x^2$$

(c)
$$6 + 3x - x^2$$

(d)
$$4x - 6 - x^2$$

11. Write in the form $a(x+p)^2 + q$: (Extension Work)

(a)
$$2x^2 + 4x - 1$$

(c)
$$2n^2 + 2n + 1$$

(d)
$$2m^2 - 3m - 6$$

End of Completing the Square review

2.4 Simplifying Algebraic Fractions

12. Simplify these expressions:

(a)
$$\frac{5}{25x}$$

(b)
$$\frac{ax}{bx}$$

(c)
$$\frac{3x^2}{6x}$$

(b)
$$\frac{ax}{bx}$$
 (c) $\frac{3x^2}{6x}$ (d) $\frac{4pq}{12q}$

(e)
$$\frac{6abc}{12a^2c}$$

(f)
$$\frac{a(b+1)}{3(b+1)}$$

(g)
$$\frac{(x-1)(x+1)}{3(x-1)}$$

(e)
$$\frac{6abc}{12a^2c}$$
 (f) $\frac{a(b+1)}{3(b+1)}$ (g) $\frac{(x-1)(x+1)}{3(x-1)}$ (h) $\frac{(x-1)(x+2)}{(x-2)(x+3)}$

(i)
$$\frac{a^2}{a^2(a+1)}$$

13. Factorise first then simplify these expressions

(a)
$$\frac{x^2 + 4x - 5}{x^2 + x - 2}$$

(b)
$$\frac{9x^2-1}{3x^2+11x-4}$$
 (c) $\frac{2x^2-x-1}{2x^2+x}$

(c)
$$\frac{2x^2 - x - 1}{2x^2 + x}$$

End of Simplifying Algebraic Fractions Review

2.5 Applying the four operations to algebraic fractions

14. Simplify:

(a)
$$\frac{a}{2} \times \frac{b}{2}$$

(b)
$$\frac{b^2}{ax} \times \frac{a^2}{by}$$

(c)
$$\frac{3}{k} \times 4k$$

(a)
$$\frac{a}{2} \times \frac{b}{2}$$
 (b) $\frac{b^2}{ax} \times \frac{a^2}{by}$ (c) $\frac{3}{k} \times 4k^2$ (d) $\frac{x+1}{4} \times \frac{16x}{x+1}$

(e)
$$\frac{3}{x} \div \frac{5}{2x}$$

(f)
$$\frac{3a}{xy} \div \frac{4ab}{x^2y}$$

(e)
$$\frac{3}{x} \div \frac{5}{2x}$$
 (f) $\frac{3a}{xy} \div \frac{4ab}{x^2y}$ (g) $\frac{2x+4}{5} \div \frac{3x+9}{10}$

15. Simplify:

(a)
$$\frac{x}{5} + \frac{x}{7}$$

(b)
$$\frac{g}{3} + \frac{5}{g}$$

(c)
$$\frac{3}{m} + \frac{4}{n}$$

(d)
$$\frac{2}{x+1} + \frac{3}{x-1}$$

(e)
$$\frac{x+1}{x-1} + \frac{x}{x+1}$$

(f)
$$7 + \frac{3}{2d-1}$$

(g)
$$\frac{a}{2} - \frac{a}{3}$$

(h)
$$\frac{1}{x} - \frac{1}{y}$$

(i)
$$\frac{3}{x} - 4$$

(j)
$$\frac{1}{x-1} - \frac{1}{x+1}$$

(k)
$$\frac{x+1}{x+2} - \frac{x}{x+1}$$

16. Simplify:

(a)
$$\frac{12e^2 f^2}{2ef^3}$$

(b)
$$\frac{(x-4)(3-x)}{4(x-4)(3-x)}$$
 (c) $\frac{x^4-16}{x^2+6x-16}$

(c)
$$\frac{x^4 - 16}{x^2 + 6x - 16}$$

(d)
$$\frac{s^2}{t} \times \frac{3t}{2s}$$

(e)
$$\frac{3y-1}{2} \times \frac{y+1}{3y-1}$$

(f)
$$\frac{5p}{8} \div \frac{p}{2}$$

(h)
$$\frac{1}{p} + \frac{2}{(p+5)}$$

(i)
$$\frac{a}{b} + \frac{b}{a}$$

(j)
$$\frac{7}{x} - \frac{3}{x+1}$$

(k)
$$\frac{3}{x} - \frac{4}{x+1}$$

(I)
$$\frac{5}{x} - \frac{3}{(x-2)}$$

(m)
$$\frac{3}{x} - \frac{5}{x+2}$$

End of Applying four operations to Algebraic fractions review

National 5 Revision Booklet Expressions and Formula

MIXED EXERCISE 3

This homework covers the following topics.

- 3.1 Calculating Gradient
- 3.2 Length of Arc/Area of Sector
- 3.3 Volumes of Solids

3.1 Finding Gradient- This is a non calculator exercise

 Calculate the gradient of the lines drawn on the following grid:

2. Calculate the gradient of a line passing through the points A(-2,-4) and B(8,1)

End of Gradient review.

3.2 Arcs and Sectors - This is a calculator exercise

3. Calculate the length of the minor arc AB and the area of sector AOB in each of the following where O is the centre of the circle:

4. Calculate the angle marked x in the diagram if the area of the sector is 75cm². Give angle to nearest whole degree.

5. The length of arc XY is 8.5cm. Calculate the circumference of the circle:

3.2 Arcs and Sectors - This is a calculator exercise

6. The area of sector PQ is 23.2cm². Calculate the radius of the circle:

- 7. From the diagram below
 - a) Calculate the **perimeter** of the sector XOY.
 - b) Calculate the area of the circle.

End of Arcs and Sectors Review

3.3 Volume - This is a calculator exercise

Important Formulae:

Volume of a cuboid – $V = I \times b \times h$

Volume of a prism – V =Area of face \times length (height) Volume of a cylinder – $V = \pi r^2 h$

Volume of a sphere – $V = \frac{4}{3}\pi r^3$

Volume of a cone – $V = \frac{3}{12} \pi r^2 h$

Volume of a pyramid – $V = \frac{1}{3}$ (area of base) × height

 $V = \frac{1}{3} \times A \times h$

8. Calculate the volume of each cuboid below:

Calculate the volume of each prism below: 9.

a)

3.3 Volume - This is a calculator exercise

10. Calculate the volume of each cylinder:

3.3 Volume- This is a calculator exercise

- 11. A cylinder has a diameter of 20 cm and a height of 16cm. Calculate its volume.
- 12. A cylinder has a diameter of 2.6m and a height of 80cm. Calculate its volume to the nearest cubic metre.
- 13. Calculate the volume of each sphere below rounding your answers to 1 decimal place:

Radius = 6cm

Radius = 2m

Radius = 9mm

Radius = 3cm

3.3 Volume- This is a calculator exercise

- 14. A sphere has a diameter of 8cm. Calculate its volume giving your answers to 3 significant figures.
- 15. Calculate the volume of each cone below rounding your answers to 1 decimal place:

Height = 6cm Radius = 3cm

Height = 12mm Radius = 8mm

Height = 5cm Radius = 3cm

Height = 6m Radius = 2m

3.3 Volume- This is a calculator exercise

- 16. A cone has a base diameter of 8cm and a height of 5cm. Calculate the volume of the cone.
- 17. A cone has a base diameter of 10cm and a **slant height** of 13cm. Calculate the volume of the cone:
- 18. A cone has a base radius of 9cm and a slant height of 15cm. Calculate the volume of the cone.
- 19. A pyramid has a square base of side 4cm and a vertical height of 7cm. Calculate the volume of the pyramid to 2 significant figures.
- 20. A pyramid has a rectangular base measuring 16mm by 12mm and a vertical height of 10mm. Calculate its volume.
- 21. A "Binnit" waste bin is in the shape of a cylinder with a hemi-sphere on top.

The diameter of the bin is 36cm and the total height is 70cm. Calculate the volume of the bin giving your answer to the nearest litre:

