N5 Applications Extended Practice Test 1

Q1. Amanda bought a house for $£ 90000$. During that year its value increased by 15%. At the end of the second year its value was $£ 111780$.
By what percentage did it appreciate in the second year?
Q2. Steve bought some shares 3 years ago for $£ 2100$. Unfortunately he made a bad investment and the value of the shares is depreciating at the rate of $11 \overline{\mathbf{B}} \%$ per annum. How much are his shares worth now?
Give your answer to the nearest $£$.

Q3. (a) A tester on a production line weighs the contents of cereal packets. In a sample of six packets the weights in grams were

$$
\begin{array}{llllll}
135 & 137 & 133 & 140 & 142 & 135
\end{array}
$$

Use appropriate formulae to calculate the mean and standard deviation.
Show all your working clearly.
(b) On a second production line, a sample of 6 packets gives a mean of 139 and a standard deviation of $4 \overline{\mathbf{A}}$.

Compare the two production lines?

Q4. A triangle AMD is cut from square $A B C D$, which has side 4 cm .

If the area of triangle AMD is $8 \mathrm{~cm}^{2}$, calculate the size of angle DAM.

Q5. The table shows the heights in metres in the high jump competition for the last eleven Olympic Games:

$2 \bar{A} 8$	$2 \bar{A} 5$	$2 \bar{A} 5$	$2 \bar{A} 8$	$2 \bar{A} 6$	$2 \bar{A} 6$
$2 \bar{A} 4$	$2 \bar{A} 3$	$2 \bar{A} 9$	$2 \bar{A} 4$	$2 \bar{A} 5$	

Use this data to construct a box plot.

In triangle $\mathrm{ABC}, \mathrm{AB}$ is $4 \overline{\mathrm{~A}} \mathrm{~cm}, \mathrm{BC}$ is 5 cm and angle BAC is 40°.

Calculate the size of angle ABC .

Q7. The diagram below shows the positions of three radar stations Alpha, Beta and Delta. The bearing of Beta from Alpha is 035°.

Calculate the bearing of Delta from Alpha.

Q8. (a) Simplify the following fraction $\frac{4 a^{2}-121}{2 a^{2}-3 a-44}$
(b) Express as a single fraction in its simplest form $\quad \frac{3 x}{2 a^{2}} \div \frac{6 x}{a}$

Q9. The diagram shows a rectangle.
Find an expression for the perimeter of the rectangle and express it as a single fraction.

Q10. Roadmakers look along the tops of a set of T-rods to ensure that straight sections of road are being created. Relative to suitable axes the top left corners of the T-rods are the points $\mathrm{A}(-8,-10,-2)$, $B(-2,-1,1)$ and $C(6,11,5)$.
Determine whether or not the section of road ABC has been built in a straight line.

End of question paper

