Differentiation

1. $f(x) = 3x^3 - 4x$. Calculate the value of f'(1).

2.
$$f(x) = (2x - 1)^2$$
. Find $f'(-2)$

3. $y = 4x^2 - 3x + 5$. Calculate the value of $\frac{dy}{dx}$ when x = 2.

4.
$$y = \frac{x^2 - 1}{x}$$
. Find the value of $\frac{dy}{dx}$ when $x = 3$.

- 5. $f(x) = \sqrt{x}(4 + 2\sqrt{x})$. Find f'(4).
- 6. $f(x) = x^{3}(x 1)$. Find the value of f'(-1).

7.
$$y = \frac{x - 3x^2}{x^3}$$
. Calculate the value of $\frac{dy}{dx}$ when $x = -2$.

8.
$$f(x) = \left(x + \frac{1}{x}\right)^2$$
. Find $f'(\frac{1}{2})$.

9.
$$f(x) = \frac{x^2 - 2x}{\sqrt{x}}$$
. Calculate f'(16).

10.
$$y = \frac{x^3 - 6x}{x\sqrt{x}}$$
. Find the value of $\frac{dy}{dx}$ when $x = 4$.

11.
$$f(x) = \frac{\sqrt{x} + x}{x^2}$$
. Find $f'(1)$

- 12. Find the rate of change of $y = 6x 2x^2$ at x = 2.
- 13. Find the rate of change of $y = \frac{1-4x}{x^2}$ at x = -2.
- 14. $f(x) = x(3x 1)^2$. Find the gradient of the tangent to this curve at x = -1.
- 15. $f(x) = \frac{x-3}{x^2\sqrt{x}}$. Find the gradient of the tangent to f(x) at the point where x = 1.
- 16. The distance, d metres, travelled on a fairground ride is calculated using the formula $d(t) = 8t^2 4t$, where t is the time in seconds after the start of the ride. Calculate the speed of the ride after 3 seconds.
- 17. The height, h, of a ball thrown upwards is calculated using the formula $h(t) = 30t 2t^2$, where t is the time in seconds after the ball is thrown. Calculate the rate of change in the height of the ball after (a) 5 seconds (b) 7.5 seconds. Explain your answer.