$\underline{Differentiation-3}$

1. Find the derivative of

(a)
$$y = x^2 + 3\sqrt{x}$$

(b)
$$f(x) = \frac{x^2 - 4}{\sqrt{x}}$$

(c)
$$y = \frac{(x-2)(x+1)}{\sqrt{x}}$$

(d)
$$y = (4x - 2)^3$$

(e)
$$y = \sqrt{6x - 4}$$

(f)
$$f(x) = \sin 4x$$

(g)
$$y = 2\cos^2 x$$

(h)
$$y = \sin^3 x$$

- 2. The height of a ball projected upwards is calculated using the formula $h(t) = 30t t^2$, where t is the time in seconds after being projected.
 - (a) Find the height of the ball after 10 seconds.
 - (b) Find the speed of the ball after 12 seconds.
- 3. Find the equation of the tangent to the curve $y = x^3 x^2 1$ at the point (2,3).
- 4. Find the equation of the tangent to the curve $y = 6\sqrt{x} \frac{2}{x^2}$ at the point where x = 1.
- 5. Find the equation of the tangent to the curve $y = \sin^2 x$ at the point where $x = \frac{\pi}{6}$.
- 6. A curve has equation $y = (3x 2)^4$. A tangent to this curve has gradient 12.
 - (a) Find the point of contact of the tangent and the curve.
 - (b) Find the equation of this tangent.
- 7. A tangent to the curve $y = \frac{4}{x^2}$ is parallel to the line y = x.

Find the equation of this tangent.

- 8. Show that the function $f(x) = 6x^2 x^3 12x$ is never increasing.
- 9. Show that $y = x^3 + 4x + 1$ is always increasing.
- 10. Find the values of x for which $y = x^3 + 6x^2 36x$ is increasing.
- 11. Find the values of x for which $y = x^3 + 3x^2 9x + 1$ is decreasing.

12. A sketch of the graph of y = f(x) where $f(x) = x^3 - 6x^2 + 9x$ is shown opposite. The graph has a maximum at A and a minimum at (3,0).

Find the coordinates of A.

- 13. The diagram opposite shows the graph of y = f(x).
 - (a) Find a formula for f(x).
 - (b) Find the coordinates of the turning point at P.

- 14. A curve has equation $y = x^3 3x^2$.
 - (a) Find where this curve cuts the x and y axes.
 - (b) Find the stationary points of the curve and determine their nature.
 - (c) Sketch the curve.
- 15. Find the minimum and maximum values of $y = 8x^3 3x^2$ in the interval $-2 \le x \le 1$.
- 16. Show that the curve $f(x) = x^3 4x^2 + 7x$ has no stationary points.
- 17. Show that the curve $y = \frac{1}{2}x^4 + x^2 20x + 15$ has a single stationary point at the point (2, -13).
- 18. In each example below sketch the graph of y = f'(x).

19. Find the coordinates of the points where the curves $y = x^3 + 2x^2 - 8x$ and $y = x^3 + x^2 + 2x$ have the same gradient.

20.
$$y = x^2 - 4x$$
. Show that $\left(\frac{dy}{dx}\right)^2 - 4y - 16 = 0$.

21. The diagram shows the end view of an aircraft hangar. The sloping sides and roof of the hangar are reinforced with metal beams.

The roof beam is of length y metres and there are 2 beams of length x metres at each sloping side.

- (a) Show that $y = 40 2(x^2 81)^{\frac{1}{2}}$
- (b) The length of metal needed for the supporting beams is L = 4x + y. Find the value of x which minimises this length.
- 22. A wind shelter, as shown opposite, has a back, top and two square sides. The total amount of canvas used in the shelter is 96 m² and the length of each square side is x metres.
 - (a) If the volume of the shelter is V cm³, show that $V = x(48 x^2)$.
 - (b) Find the dimensions of the shelter which give a maximum volume.

