Equations of Tangents

1. A curve has equation $y=x^{3}-4 x^{2}+6$. Find the equation of the tangent to this curve at the point $(2,-2)$.
2. A curve has equation $\mathrm{y}=\frac{8}{\sqrt{\mathrm{x}}}$.

Find the equation of the tangent to this curve at the point $\mathrm{P}(4,4)$.

3. Find the equation of the tangent to the curve $f(x)=x^{2}+4 \sqrt{x}$ at the point where $\mathrm{x}=1$.
4. The diagram shows part of the curve $y=2 x^{3}-5 x$. Find the equation of the tangent to this curve at the point A , where $\mathrm{x}=-1$.

5. Find the equation of the tangent to the curve $f(x)=2 x^{2} \sqrt{x}$ at the point where $x=1$.

6. A curve has equation $y=\frac{4 x-x^{2}}{\sqrt{x}}$. Find the equation of the tangent to this curve at the point T, where $x=4$.
7. A curve has equation $y=3 x^{2}-4 x$. At the point P the tangent to this curve has gradient 2. Find the coordinates of P and hence the equation of the tangent.
8. A curve has equation $\mathrm{y}=2 \mathrm{x}^{2}+8 \mathrm{x}-3$. A tangent to this curve has gradient -4 . Find the equation of this tangent.

9. A curve has equation $f(x)=x \sqrt{x}$. A tangent to this curve has gradient 3 .

Find the equation of this tangent.
10. The diagram shows the curve $y=2 x^{3}-5 x$. There are two tangents to this curve with gradient 1 .

Find the equations of these tangents.

11. A curve has equation $\mathrm{y}=\frac{12}{\sqrt{\mathrm{x}}}$. A tangent to this curve has gradient -6 .

Find the equation of this tangent.
12. A curve has equation $f(x)=x\left(4-x^{2}\right)$.

There are two tangents to this curve with gradient -8.

Find the equations of these tangents.

