Exponential Graphs

$$
\mathbf{y}=\mathbf{a}^{\mathrm{x}}
$$

$$
y=a^{-x}
$$

1. Find the value of a in each of the following
(a)

(b)

(c)

(d)

(f)

2. Find the values of a and b in the following

(b)

3. The diagram opposite shows the graph of $y=a^{x}$.

On separate diagrams sketch the graphs of
(a) $y=a^{x}+2$
(b) $y=a^{x}-1$
(c) $y=-a^{x}$
(d) $y=3 a^{x}$
4. The diagram opposite shows the graph of $y=a^{x}$.

On separate diagrams sketch the graphs of
(a) $y=a^{x+1}$
(b) $y=a^{-x}$
(c) $y=a^{-x}+2$
(d) $y=a^{1-x}$
5. The diagram opposite shows the graph of $y=a^{x}$.

On a separate diagrams show the graphs of
(a) $y=-a^{-x}$
(b) $\mathrm{y}=4-\mathrm{a}^{-\mathrm{x}}$

6. Show that the x-coordinate of the point of intersection of the graphs $y=a^{x}+1$ and $y=a^{x+1}$ is $x=\log _{a}\left(\frac{1}{a-1}\right)$
7. Show that the x-coordinate of the point of intersection of the graphs $y=a^{x}-2$ and $y=a^{x-1}$ is $x=\log _{a}\left(\frac{2 a}{a-1}\right)$

