Stationary Points

1. Find the stationary points on the curve $y=8 x^{3}-3 x^{2}$ and determine their nature.
2. Find the stationary points of $f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12$ and determine their nature.
3. A curve has equation $f(x)=x^{3}+2 x^{2}-4 x-8$.
(a) Show that $(x-2)$ is a factor of $f(x)$ and hence find where this curve crosses the x and y axes.
(b) Find the turning points on the curve and determine their nature.
(c) Hence sketch the curve.
4. A curve has equation $f(x)=2 x^{4}+2 x^{3}$.
(a) Find where this curve crosses the x and y axes.
(b) Find the turning points on the curve and determine their nature.
(c) Hence sketch the curve.
5. A curve has equation $f(x)=4 x^{3}-15 x^{2}+12 x+4$.
(a) Find where this curve crosses the x and y axes.
(b) Find the turning points on the curve and determine their nature.
(c) Hence sketch $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{3}-15 \mathrm{x}^{2}+12 \mathrm{x}+4$.
6. A curve has equation $f(x)=x^{3}+2 x^{2}-4 x-8$.
(a) Show that $x+2$ is a factor of $f(x)$ and hence factorise completely.
(b) Find the stationary points of $\mathrm{f}(\mathrm{x})$ and determine their nature.
(c) Sketch the graph of $f(x)$.
(d) Calculate the area enclosed by the curve and the x -axis.
7. $y=\frac{1}{3} x^{3}-2 x^{2}+3 x$.
(a) Find the stationary points of this curve and determine their nature.
(b) Find where the graph meets the x -axis.
(c) Calculate the area enclosed by the curve and the x-axis.
8. A function f is defined as $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}+2$.
(a) Find the coordinates of the stationary points of $f(x)$ and determine their nature.
(b) Show that ($x-1$) is a factor of $f(x)$ and hence factorise $f(x)$ fully.
(c) Hence sketch the curve $f(x)=x^{3}-3 x+2$.
