Differential Equations

1. $f^{\prime}(x)=6 x^{2}-4 x$. Given $f(2)=10$ find a formula for $f(x)$.
2. $f^{\prime}(x)=10 x-2 x^{3}$. Given $f(2)=0$ find a formula for $f(x)$.
3. $\frac{d y}{d x}=3+6 x-x^{2}$. When $x=3, y=10$. Find a formula for y.
4. $\frac{d y}{d x}=6 x-\frac{5}{x^{2}}$. Find a formula for the curve y given it passes through the point $(1,6)$.
5. $\frac{d y}{d x}=3 \sqrt{x}-6 x$. Find a formula for y given the curve passes through $(4,-30)$.
6. The gradient of the tangent to a curve is given by $f^{\prime}(x)=6 x^{2}-4$. If the curve passes through the point (2,7), find its equation.
7. The gradient of the tangent to a curve is given by $\frac{d y}{d x}=\frac{2}{\sqrt{x}}+1$. If the curve passes through the point $(9,10)$, find its equation.
8. $f^{\prime}(x)=3 x^{2}-4 x+6$ and $f(2)=17$.

Find a formula for $f(x)$.
9. $f^{\prime}(x)=\frac{2 x^{3}-x^{2}}{x}$ and $f(6)=100$.

Find a formula for $\mathrm{f}(\mathrm{x})$.
10. $f^{\prime}(x)=4 x\left(x^{2}-1\right)$ and $f(-1)=2$. Find a formula for $f(x)$.
11. The graph of $y=g(x)$ passes through the point $(3,-1)$. If $\frac{d y}{d x}=3 x^{2}-\frac{1}{x^{2}}$, express y in terms of x.
12. The graphs of $y=f(x)$ and $y=g(x)$ intersect at the point A on the y-axis. If $g(x)=4 x+2$ and $f^{\prime}(x)=2 x-6$, find $f(x)$.

