Functions from Graphs

1. The parabola opposite crosses the x-axis at $(0,0)$ and $(2,0)$ and has a minimum turning point at $(1,-6)$.

Find the equation of this parabola.

2. In the diagram A is the point $(1,12)$.

Find the equation of $f(x)$.

3. The cubic function shown has roots at $\mathrm{x}=0, \mathrm{x}=2$ and $\mathrm{x}=3$.
It has a maximum turning point at $(1,4)$.
Determine the equation of this cubic function in the form

$$
a x^{3}+b x^{2}+c x+d
$$

4. The function shown has zeros at $\mathrm{x}=1,4$, and 6 . It has a maximum turning point at $(5,8)$.

Find the equation of this cubic function.

5. The function opposite has roots of $-1,1$ and 4 and it crosses the y-axis at the point $(0,16)$.

Find the equation of this function.

6. The parabola shown has a maximum turning point of $(4,32)$ and P is the point $(8,0)$.
(a) Find the equation of the parabola.
(b) The line $y=-2 x+16$ intersects this parabola at P and Q . Find the coordinates of Q .

7. A parabola passes through the points $(0,0),(6,0)$ and $(3,9)$ as shown.
(a) The equation of this parabola can be written in the form $y=a x(b-x)$. Find the values of a and b.
(b) The line $y=x+4$ intersects this curve at two points . Find the coordinates of these points.

8. The diagram opposite is a sketch of the graph of a cubic function $\mathrm{y}=\mathrm{f}(\mathrm{x})$.
(a) If $y=-16$ is a tangent to the curve, find a formula for $f(x)$.
(b) The line $\mathrm{y}=12 \mathrm{x}-32$ crosses this curve at 3 points.
Find the coordinates of these points.

9. The diagram shows a parabola passing through ($-1,0$), $(0, \mathrm{p})$ and $(\mathrm{p}, 0)$.

Show that the equation of the parabola can be written as

$$
y=p+(p-1) x-x^{2}
$$

