Integration

1. Calculate
(a) $\int x^{2}(x-5) d x$
(b) $\int_{1}^{4} \frac{x^{2}+3}{\sqrt{x}} d x$
(c) $\int_{-1}^{2}\left(\frac{x}{2}+\frac{2}{x}\right)^{2} d x$
2. Calculate the shaded area in the diagram opposite.

3. The diagram shows part of the graph of $y=7 x-10-x^{2}$.
Calculate the shaded area.

4. Find the area between the curves shown.

5. The diagram opposite illustrates the graph of $y=f(x)$ where $f(x)=2 x^{3}-x^{2}-8 x+4$.
(a) Show that $x-2$ is a factor of $f(x)$ and hence fully factorise $f(x)$.
(b) Calculate the shaded area.

6. The diagram shows part of $y=f(x)$.
(a) Find a formula for $f(x)$.
(b) Calculate the area enclosed by $\mathrm{f}(\mathrm{x})$ and the x -axis.
7. (a) Find the equation of the parabola opposite.
(b)..Hence calculate the shaded area between this parabola and the line $\mathrm{y}=2 \mathrm{x}$.

8.In the diagram opposite the area shown is 60 . The curve has equation $y=x^{2}-p x+12$.

Calculate the value of p.

9. The diagram opposite shows the curve $y=x^{3}+2 x^{2}-5 x-5$ and the line $A B$. The line $A B$ is a tangent to the curve at the point $\mathrm{A}(-2,5)$.
(a) Find the equation of the tangent AB .
(b) Hence find the coordinates of B .
(c) Calculate the shaded area between the curve and the line.

10. The diagram shows a tunnel 36 metres wide by 28 metres high.
The roof of the tunnel is in the form of a parabola with equation $y=24-\frac{1}{6} x^{2}$.
(a) Find the coordinates of A and B.
(b) Calculate the shaded area.

11. $f^{\prime}(x)=3 x^{2}-4 x+6$ and $f(2)=17$.

Find a formula for $f(x)$.
12. $f^{\prime}(x)=\frac{2 x^{3}-x^{2}}{x}$ and $f(6)=100$.

Find a formula for $f(x)$.
13. $f^{\prime}(x)=4 x\left(x^{2}-1\right)$ and $f(-1)=2$. Find a formula for $f(x)$.
14. The graph of $y=g(x)$ passes through the point $(3,-1)$. If $\frac{d y}{d x}=3 x^{2}-\frac{1}{x^{2}}$, express y in terms of x.
15. The graphs of $y=f(x)$ and $y=g(x)$ intersect at the point A on the y-axis. If $g(x)=4 x+2$ and $f^{\prime}(x)=2 x-6$, find $f(x)$.

