Polynomials

1. Find the remainder when the polynomial $2 x^{3}-x^{2}-5 x-1$ is divided by $(x-2)$.
2. (a) Show that $(x+1)$ is a factor of $f(x)=x^{3}-x^{2}-x+1$.
(b) Hence factorise $f(x)$ fully.
3. (a) Show that $(x-3)$ is a factor of $x^{3}-8 x^{2}+x+42$.
(b) Hence factorise $x^{3}-8 x^{2}+x+42$ fully.
4. (a) Show that $(x+4)$ is a factor of $g(x)=x^{3}-13 x+12$.
(b) Hence factorise $\mathrm{g}(\mathrm{x})$ fully.
5. (a) Show that $(x-2)$ is a factor of $x^{3}-28 x+48$.
(b) Hence factorise $x^{3}-28 x+48$ completely.
6. $f(x)=x^{3}+2 x^{2}-5 x-6$. Factorise $f(x)$ fully.
7. $g(x)=x^{3}+2 x^{2}-4 x-8$. Factorise $g(x)$ fully.
8. (a) Show that $(2 x-1)$ is a factor of $f(x)=2 x^{3}+3 x^{2}-32 x+15$
(b) Hence factorise $f(x)$ completely.
9. (a) Show that $(3 x+1)$ is a factor of $h(x)=3 x^{3}+x^{2}-3 x-1$.
(b) Hence factorise h(x) fully.
10. $f(x)=x^{3}-x^{2}-4 x+4$.
(a) Show that $(x-1)$ is a factor of $f(x)$.
(b) Find the roots of $f(x)=0$.
11. $g(x)=x^{3}+3 x^{2}-18 x-40$.
(a) Show that 4 is a root of $g(x)=0$.
(b) Find the other roots of $\mathrm{g}(\mathrm{x})=0$
12. (a) Show that $x=-3$ is a root of $x^{3}-19 x-30=0$.
(b) Hence solve $\mathrm{x}^{3}-19 \mathrm{x}-30=0$ completely.
13. (a) $f(x)=2 x^{3}+x^{2}-72 x-36$. Show that $x=6$ is a root of $f(x)=0$.
(b) Hence solve $f(x)=0$ fully.
14. (a) Show that -2 is a root of $x^{3}+2 x^{2}-25 x-50=0$.
(b) Hence find the other roots of $x^{3}+2 x^{2}-25 x-50=0$.
