Finding Roots of a Polynomial

1. $f(x)=x^{3}-7 x+6$.
(a) Show that $(x-2)$ is a factor of $f(x)$.
(b) Hence solve the equation $\mathrm{f}(\mathrm{x})=0$.
2. Show that 4 is a root of the equation $x^{3}+2 x^{2}-15 x-36=0$ and find the other roots of this equation.
3. Show that 2 is a zero of $2 x^{3}-3 x^{2}-3 x+2=0$ and find the other zeros.
4. Find the roots of $x^{3}+6 x^{2}+3 x-10=0$.
5. $y=x^{3}-3 x-2$. Find the coordinates of the points where this curve cuts the $x-a x i s$.
6. Find the points where the curve $y=x^{3}-2 x^{2}-x+2$ cuts
(i) the y-axis
(ii) the x-axis.
7. The line $y=4 x+10$ and the curve $y=x^{3}+6 x^{2}+3 x-20$ intersect at 3 points. One of these points is $(-3,-2)$. Find the coordinates of the other points.
8. The tangent to the curve $y=x^{3}-7 x+6$ at the point $(-1,12)$ has equation $y+4 x=8$.
Find the coordinates of the other point of intersection of the curve and this tangent.

9. The curve $\mathrm{y}=\mathrm{x}^{3}-10 \mathrm{x}+6$ and the line $\mathrm{y}=2 \mathrm{x}-10$ intersect at two points. Find the coordinates of these two points.
10. $f(x)=x^{3}-2 x^{2}-5 x+6$ and $g(x)=x-1$.
(a) Show that $f(g(x))=x^{3}-5 x^{2}+2 x+8$.
(b) Solve $\mathrm{f}(\mathrm{g}(\mathrm{x}))=0$.
(c) State a suitable domain for $\frac{1}{\mathrm{f}(\mathrm{g}(\mathrm{x}))}$.
