The Circle

1. Find the equation of the circle centre $(-4,7)$ which has the x -axis as a tangent.
2. Find the equation of the circle which has the lines $x=-4, x=8, y=-2$ and $y=10$ as tangents.
3. A circle has equation $x^{2}+y^{2}-4 x-8 y-5=0$. Write down the equation of the tangent to this circle at the point $(-3,4)$.
4. A circle has equation $(x+5)^{2}+(y-1)^{2}=16$. Write down the equation of the tangent to this circle at the point $\mathrm{A}(-5,-3)$.
5. A circle has equation $x^{2}+y^{2}+6 x+4=0$. Find the equation of the tangent to this circle at the point $\mathrm{P}(-5,-1)$.

6. Find the equation of the tangent to the circle $x^{2}+y^{2}-8 x+2 y-3=0$ at the point $\mathrm{A}(2,3)$.

7. A is the point $(-4,2)$ and B is $(6,-4)$. Find the equation of the circle which has AB as a diameter.

8. P is the point $(-5,3)$ and Q is $(5,-21)$. Find the equation of the circle which has $P Q$ as diameter.
9. Two congruent circles with centres A and B touch at G. The equations of the circles are
$x^{2}+y^{2}+8 x-4 y-5=0 \quad$ and $\quad x^{2}+y^{2}-4 x-20 y+79=0$
(a) Find the coordinates of G.
(b) Find the length of AB .

10. Two circles have equations

$$
(x+1)^{2}+(y+3)^{2}=20 \text { and } x^{2}+y^{2}-10 x-18 y+26=0
$$

(a) Write down the centre and radius of each circle.
(b) Show that the circles touch at a single point.
(c) Find P , the point of contact of the circles.
11. Two circles have equations

$$
x^{2}+y^{2}+4 x+16 y-60=0 \quad \text { and } \quad x^{2}+y^{2}-8 x+4 y+12=0
$$

Show that these circles touch at a single point.
12. Three circles touch externally as shown.

The centres of the circles are collinear and the equations of the two smaller circles are
$(x+2)^{2}+(y-8)^{2}=9$ and
$x^{2}+y^{2}-20 x+16 y+155=0$
Find the equation of the larger circle.

13. The circle $x^{2}+y^{2}+4 x-7 y-8=0$ cuts the y-axis at two points.

Find the coordinates of these points.
14. The circle $x^{2}+y^{2}-2 x+10 y-24=0$ cuts the x-axis at the points A and B. Find the length of AB.
15. (a) A circle has equation $(x+3)^{2}+(y-6)^{2}=61$. Find the equation of the tangent to this circle at the point $A(3,3)$.
(b) Show that this tangent is also a tangent to the circle with equation $x^{2}+y^{2}+6 x-7 y-10=0$ and find the point of contact.

16. Show that the line $y=-3 x-10$ is a tangent to the circle with equation $x^{2}+y^{2}-8 x+4 y-20=0$ and find the point of contact.
17. (a) Find the equation of the tangent to the curve $y=2 x^{3}-4 x^{2}-7 x+12$ at the point where $\mathrm{x}=2$.
(b) Show that this tangent is also a tangent to the circle $x^{2}+y^{2}-6 x+2 y+10=0$ and find the point of contact.
18. Show that the line $y=2 x+1$ does not intersect the circle with equation $x^{2}+y^{2}-2 x+4 y+1=0$.
19. For what range of values of p does the equation $x^{2}+y^{2}+2 p x+2 p y+6 p+8=0$ represent a circle.
20. For what range of values of k does the equation $x^{2}+y^{2}-2 k x+4 k y+4-k=0$ represent a circle.
21. (a) A circle has centre $(a, 0), a>0$ and radius 4 units. Write down the equation of this circle.
(b) Show that if $\mathrm{y}=\mathrm{x}$ is a tangent to this circle then $\mathrm{a}=4 \sqrt{2}$.

22. The diagram shows six identical circles. Circle A has equation $x^{2}+y^{2}-6 x-6 y+9=0$.
(a) Write down the equation of circle F .
(b) Find the point of contact between the the circles C and D .

23. (a) Find the equation of $A B$, the perpendicular bisector of the line joining the points $\mathrm{P}(-3,1)$ and $\mathrm{Q}(1,9)$.
(b) C is the centre of a circle passing through P and Q . Given that QC is parallel to the y-axis, determine the equation of the circle.
(c) The tangents at P and Q intersect at T .

Write down
(i) the equation of the tangent at Q
(ii) the coordinates of T .

24. The diagram shows a tangent kite ABCD and a circle centre C.
A is the point $(-8,0)$ and B is $(4,9)$.
The radius CD is parallel to the y-axis.
(a) Find the coordinates of D and write down the equation of CD.
(b) Find the equation of the line BC.
(c) Find the coordinates of C and hence determine the equation of the circle.

