## The Discriminant

1. Show that $x=2$ is the only real solution to the equation $x^{3}-x^{2}+x-6=0$.
2. Show that $x=-4$ is the only real solution to the equation $x^{3}+2 x^{2}-3 x+20=0$.
3. (a) Show that the line $y=2 x-2$ and the curve $y=2 x^{3}+5 x^{2}+12 x+5$ intersect at the point $(-1,-4)$.
(b) Show that there are no other points of intersection between the line and the curve.
4. (a) Show that the line $y=3 x-2$ and the curve $y=x^{3}+5 x+10$ intersect at the point ( $-2,-8$ ).
(b) Prove that there are no other points of intersection between the curve and the line.
5. Show that the curve with equation $f(x)=x^{3}+x^{2}+5 x-4$ has no stationary points.
6. (a) Show that the curve $y=\frac{1}{4} x^{4}+2 x^{2}-16 x+5$ has a stationary point when $x=2$.
(b) Prove that the curve has no other stationary points.
7. (a) $f(x)=x^{4}+8 x^{3}+24 x^{2}+28 x+3$. Show that $f(x)$ has a stationary point when $x=-1$. (b) Show that the curve has no other stationary points.
8. The equation $2 x^{2}+4 p x+p^{2}-2 p-1=0$ has equal roots.

Find the value of p .
9. (a) Prove that the roots of $m x^{2}-(2 m+4) x+8=0$ are always real.
(b) If the roots of $m x^{2}-(2 m+4) x+8=0$ are in fact equal, write down the value of $m$.

