Trigonometric Equations

Most trigonometric equations can be divided into one of three types:

<u>TYPE 1</u>: Equations involving a trigonometric function squared but no other trigonometric function.

Examples $4\sin^2 x + 5 = 6$, $3\tan^2 x - 9 = 0$

<u>TYPE 2</u>: Equations involving 2x, 3x, etc. but no other trigonometric function.

Examples $3\sin 2x - 1 = 1$, $\sqrt{3}\tan(3x - 30) + 2 = 1$

<u>TYPE 3:</u> Equations involving 2x and another trigonometric function i.e. equations involving the double angle formulae.

Examples $4\sin 2x - 2\cos x = 0$, $\cos 2x - 1 = 3\cos x$

TYPE 1:

Example 1 Solve $4\sin^2 x + 5 = 6$ $0 \le x \le 360$

 Solution:
 $4\sin^2 x + 5 = 6$ sin
 all

 $4\sin^2 x = 1$ $\sin^2 x = \frac{1}{4}$ $-\frac{1}{2}$
 $\sin^2 x = \frac{1}{2}, -\frac{1}{2}$ $\tan \cos x$

 $x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$

Example 2 Solve $3\tan^2 x - 9 = 0$ $0 \le x \le 360$ Solution: $3\tan^2 x - 9 = 0$ $3\tan^2 x = 9$ $\tan^2 x = 3$ $\tan x = \sqrt{3}, -\sqrt{3}$ $x = 60^0, 120^0, 240^0, 300^0$ in the second seco

TYPE 2:

Example 1 Solve $3\sin 2x - 1 = 1$ $0 \le x \le 360$ (Since question involves 2x change range to $0 \le x \le 720$)

L

Solution:
$$3\sin 2x - 1 = 1$$

 $3\sin 2x = 2$
 $\sin 2x = \frac{2}{3}$
 $2x = 41.8^{\circ}, 138.2^{\circ}, 360^{\circ} + 41.8^{\circ}, 360^{\circ} + 138.2^{\circ}$
 $x = 20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ}$
 $\sin all$
 $\tan \cos all$

Example 2 Solve $\sqrt{3} \tan(3x - 30) + 2 = 1$ $0 \le x \le 180$ (Since question involves 3x change range to $0 \le x \le 540$)

Solution:
$$\sqrt{3} \tan(3x - 30) + 2 = 1$$

 $\sqrt{3} \tan(3x - 30) = -1$
 $\tan(3x - 30) = -\frac{1}{\sqrt{3}}$
 $3x - 30 = 150^{\circ}, 330^{\circ}, 360^{\circ} + 150^{\circ}, 360^{\circ} + 330^{\circ}$
 $3x - 30 = 150^{\circ}, 330^{\circ}, 510^{\circ}, 690^{\circ}(\text{too big})$
 $3x = 180^{\circ}, 360^{\circ}, 540^{\circ}$
 $x = 60^{\circ}, 120^{\circ}, 180^{\circ}$

TYPE 3:

Example 1 Solve $4\sin 2x - 2\cos x = 0$ $0 \le x \le 360$

Solution: (Use the formula $\sin 2x = 2\sin x \cos x$)

 $4\sin 2x - 2\cos x = 0$ $4(2\sin x \cos x) - 2\cos x = 0$ $8\sin x \cos x - 2\cos x = 0$ $2\cos x(4\sin x - 1) = 0$

$2\cos x = 0$	or	$4\sin x - 1 = 0$	sin	all
$\cos x = 0 \qquad \qquad 4\sin x = 1$		$4\sin x = 1$		
using graph: $x = 90^{\circ}, 270^{\circ}$		$\sin x = \frac{1}{4} \\ x = 14.5^{0}, 165.5^{0}$	tan	cos

Exan	nple 2	Solve $\cos 2x - 1 = 3\cos x$	$0 \le x \le 360$	
Solu	Solution: (Use the formula $\cos 2x = 2\cos^2 x - 1$)			
		$\cos 2x - 1 = 3\cos x$ $2\cos^{2} x - 1 - 1 = 3\cos x$ $2\cos^{2} x - 3\cos x - 2 = 0$ $(2\cos x + 1)(\cos x - 2) = 0$		
	1	$2\cos x + 1 = 0$	or	$\cos x - 2 = 0$
sin	all	$2\cos x = -1$		$\cos x = 2$
		$-\cos x = -\frac{1}{2}$		no solutions
tan	cos			
		$x = 120^{0}, 240^{0}$		

<u>NOTE</u>: If equation involves $\cos 2x$ and $\cos x$ use the formula $\cos 2x = 2\cos^2 x - 1$ If equation involves $\cos 2x$ and $\sin x$ use the formula $\cos 2x = 1 - 2\sin^2 x$

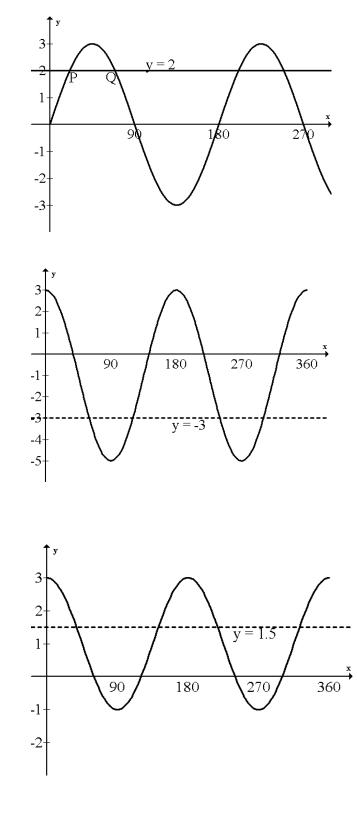
Questions

1. Solve the following equations

(a) $3\tan^2 x - 1 = 0$	$0 \le x \le 360$
(b) $2\cos 2x + 3 = 2$	$0 \le x \le 360$
(c) $4\sin x - 3\sin 2x = 0$	$0 \le x \le 360$
(d) $2\cos 2x = 1 - \cos x$	$0 \le x \le 360$
(e) $4\cos^2 x - 1 = 2$	$0 \leq x \leq 2 \pi$
(f) $5\tan(2x-40) + 1 = 6$	$0 \le x \le 360$
(g) $2\sin 2x + \sqrt{3} = 0$	$0 \leq x \leq 2 \pi$
(h) $3\sin 2x - 3\cos x = 0$	$0 \le x \le 360$
(i) $\cos 2x + 5 = 4\sin x$	$0 \le x \le 360$
(j) $4\tan 3x + 5 = 1$	$0 \leq \! x \leq \pi$
(k) $2\cos(2x+80) = 1$	$0 \le x \le 180$

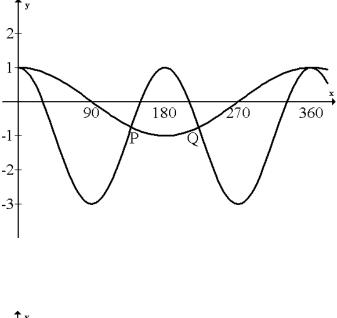
- (1) $6\sin^2 x + 5 = 8$ $0 \le x \le 2\pi$
- (m) $5\sin 2x 6\sin x = 0$ $0 \le x \le 360$
- (n) $3\cos 2x + \cos x = -1$ $0 \le x \le 360$
- 2. (a) Show that $2\cos 2x \cos^2 x = 1 3\sin^2 x$
 - (b) Hence solve the equation $2\cos 2x \cos^2 x = 2\sin x$ $0 \le x \le 90$
- 3.(a) The diagram shows the graph of y = asin bx.Write down the values of a and b.
 - (b) Find the coordinates of P and Q the points of intersection of this graph and the line y = 2.

- 4. (a) The diagram shows the graph of y = acos bx + c.Write down the values of a, b and c.
 - (b) Find the coordinates of the points of intersection of this graph and the line y = -3, $0 \le x \le 360$

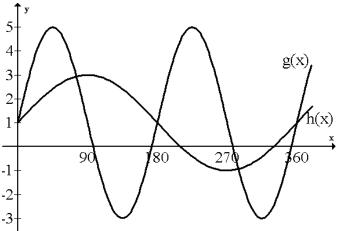


- 5. (a) The diagram shows the graph of y = acos bx + c.Write down the values of a, b and c.
 - (b) For the interval $0 \le x \le 360$, find the points of intersection of this graph and the line y = 1.5

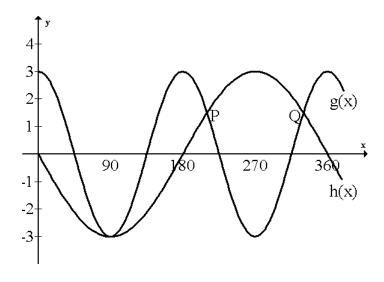
- 6. The diagram shows the graphs of $g(x) = a\cos bx + c$ and $h(x) = \cos x$
 - (a) State the values of a, b and c.
 - (b) Find the coordinates of P and Q.



- 7. The diagram shows the graphs of $g(x) = a\sin bx + c$ and $h(x) = d\sin x + e$
 - (a) Write down the values of a, b and c.
 - (b) Write down the values of d and e.
 - (c) Find the points of intersection of these curves for $0 \le x \le 360$



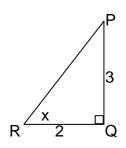
- 8. The diagram shows the graphs of $h(x) = a \sin x$ and $g(x) = b \cos c x$.
 - (a) Write down the values of a ,b and c.
 - (b) Find the coordinates of P and Q.



Addition / Double Angle Formulae Applications

1. Using the triangle shown opposite, show that the exact value of $\cos 2x$ is $\frac{7}{25}$ 3

2. Using triangle PQR, find the exact value of sin 2x.



4

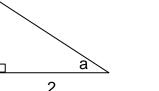
3. Given sin x = $\frac{2}{\sqrt{5}}$, find the exact value of

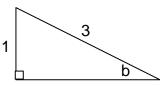
- (a) $\sin 2x$
- (b) $\cos 2x$
- (c) $\tan 2x$
- 4. Given $\sin x = \frac{1}{3}$
 - (a) Show that (i) $\cos 2x = \frac{7}{9}$ (ii) $\sin 2x = \frac{4\sqrt{2}}{9}$

(b) By writing $\sin 4x$ as $\sin 2(2x)$, find the exact value of $\sin 4x$

1

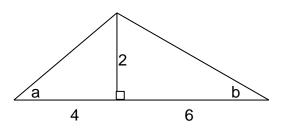
5. Using the triangles opposite show that



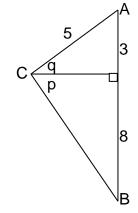


$$\sin(a-b) = \frac{2\sqrt{2}-2}{3\sqrt{5}}$$

6. Using the diagram shown show that $sin(a + b) = \frac{1}{\sqrt{2}}$

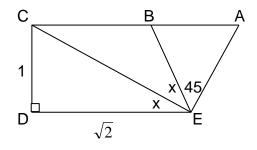


- 7. The diagram shows triangle ABC. Find the exact value of
 - (a) sin ACB(b) cos ACB
 - (c) tan ACB



8. In the diagram angle DEC = angle CEB = x^0 CD = 1 unit and DE = $\sqrt{2}$ units.

Find the exact value of cos DEA.



- 9. Functions $f(x) = \sin x$, $g(x) = x + \frac{\pi}{6}$ and $h(x) = x \frac{\pi}{6}$
 - (a) Show that $f(g(x)) = \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x$
 - (b) Find a similar expression for f(h(x)).
 - (c) Hence solve the equation $f(g(x)) + f(h(x)) = \frac{3}{2}$ for $0 \le x \le 2\pi$