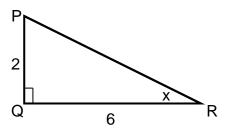
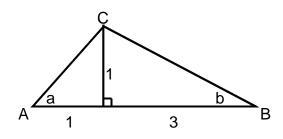
<u>Trigonometry – Revision</u>

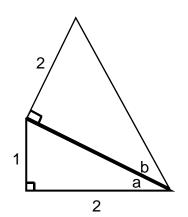
- 1. $\tan x = 4\sin\frac{\pi}{3}\cos^2\frac{\pi}{4}$. Find the exact value of x.
- 2. In triangle PQR show that $\cos 2x = \frac{4}{5}$.



3. In triangle ABC, show that the exact value of $\sin(a + b)$ is $\frac{2}{\sqrt{5}}$.



4. For the diagram opposite, show that $\cos(a+b)$ is $\frac{2\sqrt{5}-2}{3\sqrt{5}}$.



- 5. Given $\tan x = \frac{1}{7}$, show that $\sin 2x$ is $\frac{7}{25}$.
- 6. (a) Solve the equation $2\sin^2 x 1 = 0$, $0 \le x \le 360$
 - (b) Solve the equation $3tan^2 x = 1$, $0 \le x \le 2\pi$
- 7. Solve, for $0 \le x \le 360$

(a)
$$2\cos 2x + 1 = 0$$

(b)
$$4(\tan 2x - 1) = 4$$

(c)
$$3\cos(x-40) = 1$$

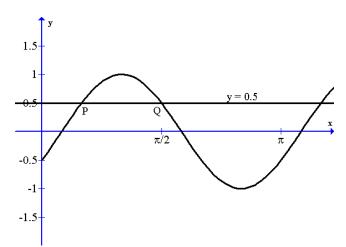
(d)
$$\sqrt{2} \sin(2x - 10) = 1$$

8. Solve, for $0 \le x \le \pi$

(a)
$$2\sin 2x - \sqrt{3} = 0$$

(b)
$$\sqrt{3} \tan \left(2x - \frac{\pi}{3}\right) + 1 = 0$$

9. The diagram shows a sketch of the graph $y = \sin \left(2x - \frac{\pi}{6}\right) \text{ and the straight line } y = 0.5.$ Find the coordinates of P and Q.



10. Solve, for $0 \le x \le 360$

(a)
$$2\sin 2x + \cos x = 0$$

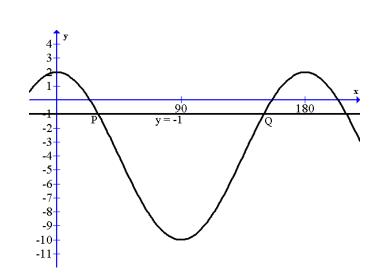
(b)
$$\cos 2x = 3\sin x + 1$$

(c)
$$\cos 2x = \cos x$$

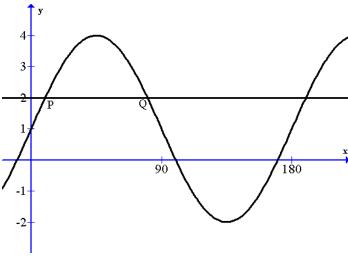
$$(d) \cos 2x - 2\sin^2 x = 0$$

(e)
$$5\cos 2x - \cos x + 2 = 0$$

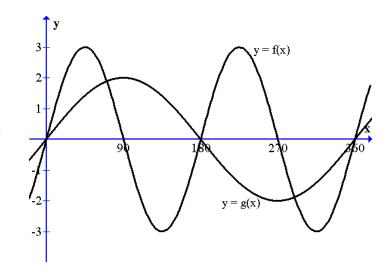
- 11. (a) Show that $3\cos 2x 4\cos^2 x = -1 2\sin^2 x$
 - (b) Hence solve $3\cos 2x 4\cos^2 x = 3\sin x$, $0 \le x \le 360$
- 12. (a) The diagram opposite shows the graph of $y = a\cos bx + c$. Write down the values of a, b and c.
 - (b) Find the coordinates of P and Q, the points of intersection of the graph in(a) with the line y = -1.



- 13. (a) The graph opposite has equation $y = a\sin bx + c$. Write down the values of a, b and c.
 - (b) Find the x-coordinates of P and Q.

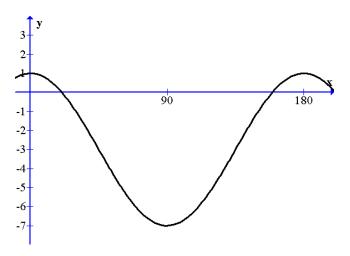


- 14. The diagram shows the graphs of $f(x) = a\sin bx$ and $g(x) = c\sin x$.
 - (a) State the values of a, b and c.
 - (b) Find the points of intersection of f(x) and g(x).

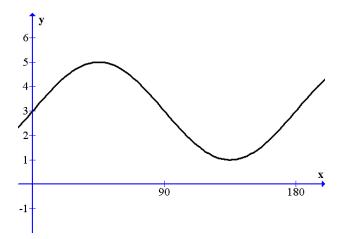


- 15. Express $\cos x \sin x$ in the form $k\cos(x \alpha)$, where k > 0 and $0 \le \alpha \le 360$.
- 16. Express $3\sin x 4\cos x$ in the form $k\sin(x + a)$, where k > 0 and $0 \le a \le 360$.
- 17. (a) Express $2\cos x + 3\sin x$ in the form $k\cos(x a)$, where k > 0 and $0 \le a \le 360$.
 - (b) Hence solve $2\cos x + 3\sin x = 2, 0 \le x \le 360$.
- 18. Solve $4\sin x + 3\cos x = 2.5$, $0 \le x \le 180$.
- 19. (a) Express $2\cos x + 2\sin x$ in the form $k\cos(x \alpha)$, where k > 0 and $0 \le \alpha \le 360$.
 - (b) Write down the maximum value of $2\cos x + 2\sin x$ and the value of x for which it occurs.

- 20. (a) Express $\sqrt{5} \sin x 2\cos x$ in the form $k\sin(x + a)$, where k > 0 and $0 \le a \le 360$.
 - (b) Write down the minimum value of $\sqrt{5} \sin x 2\cos x$ and the value of x for which it occurs.
 - 21. (a) The diagram shows the graph of $f(x) = a\cos bx + c$. Write down the values of a,b and c.



(b) The diagram shows the graph of $g(x) = p\sin qx + r$. Write down the values of p, q and r.



- (c) Express f(x) + g(x) in the form $k\cos(2x a)$.
- (d) Hence solve $f(x) + g(x) = \sqrt{15}$, $0 \le x \le 360$.
- 22. Sketch the following graphs

(a)
$$y = 2\sin x - 1$$
 $0 \le x \le 360$

(b)
$$y = 3\cos 2x + 2$$
 $0 \le x \le 180$

(c)
$$y = 4\sin(x - 40)$$
 $0 \le x \le 2\pi$

(d)
$$y = 2\cos(2x + 10) - 1$$
 $0 \le x \le \pi$