Further Calculus

Differentiation

1. Differentiate

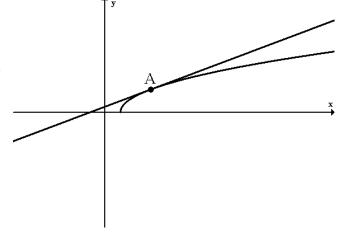
(a)
$$y = (4x - 2)^3$$

(b)
$$y = \sqrt{6x - 2}$$

(a)
$$y = (4x - 2)^3$$
 (b) $y = \sqrt{6x - 2}$ (c) $f(x) = \frac{2}{5x + 2}$ (d) $y = 3\sin 2x$

(d)
$$y = 3\sin 2x$$

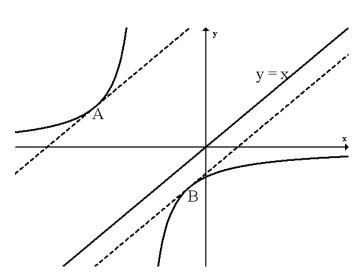
$$(e) f(x) = \cos^2 x + 2\sin 4x$$

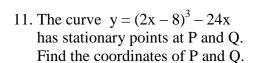

2.
$$f(x) = 2\cos 2x - \sin 4x$$
. Show that $f'(\frac{\pi}{6}) = 2(1 - \sqrt{3})$

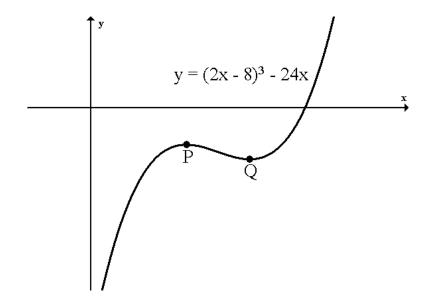
3.
$$f(x) = (2 + \cos x)^3$$
. Show that $f'(\frac{\pi}{2}) = -12$

4.
$$y = \sqrt{27 + x^2}$$
. Find the value of $\frac{dy}{dx}$ when $x = 3$.

5.
$$f(x) = (9x - 1)^{\frac{1}{3}}$$
. Find $f'(1)$.


6. Find the equation of the tangent to the curve $y = \sqrt{6x - 2}$ at the point A, where x = 1.


- 7. Find the equation of the tangent to the curve $y = \frac{4}{3x+4}$ at the point where x = -2.
- 8. Find the points, A and B, on the curve


$$y = \frac{-9}{x+4}$$

where the tangents to the curve are parallel to the line y = x.

- 9. Find the equation of the tangent to the curve $y = 2\sin\left(x \frac{\pi}{6}\right)$ at the point where $x = \frac{\pi}{3}$.
- 10. Find the equation of the tangent to the curve $y = 4\cos\left(2x \frac{\pi}{6}\right)$ at the point where $x = \frac{\pi}{2}$

- 12. (a) Show that the curve $y = 2\sin 2x 4x$ is never increasing.
 - (b) Determine the coordinates of the stationary points of this curve in the interval $0 \le x \le 180$.

Integration

13. Integrate

(a)
$$\int (2x-4)^3 dx$$

(b)
$$\int \sqrt{6x+1} dx$$

$$(c) \int \frac{6}{(1-3x)^2} dx$$

(a)
$$\int (2x-4)^3 dx$$
 (b) $\int \sqrt{6x+1} dx$ (c) $\int \frac{6}{(1-3x)^2} dx$ (d) $\int \sin(4x-2) dx$

(e)
$$\int 4\cos(2x+1) dx$$

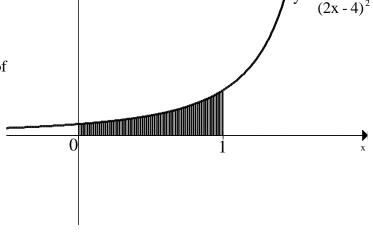
14. Evaluate (a)
$$\int_0^2 \sqrt{4x+1} \ dx$$
 (b) $\int_1^2 \frac{8}{(1-2x)^3} \ dx$

(b)
$$\int_{1}^{2} \frac{8}{(1-2x)^3} dx$$

15.
$$\frac{dy}{dx} = 10(2x-1)^4$$
 and the curve passes through the point (1,6). Find a formula for y.

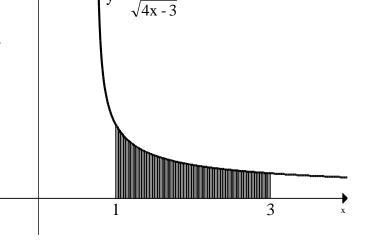
16.
$$\frac{dy}{dx} = \frac{1}{\sqrt{2x-4}}$$
 and the curve passes through the point (10,3). Find a formula for y.

17.
$$\frac{dy}{dx} = 3\sin 2x$$
. This curve passes through the point $\left(\frac{5}{12}\pi, \sqrt{3}\right)$. Find a formula for y.

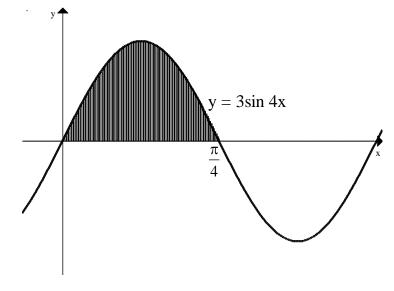

18. $\frac{dy}{dx} = 10\cos 5x$. This curve passes through the point $(\frac{\pi}{6}, 4)$. Find y.

19. The diagram shows part of the graph of

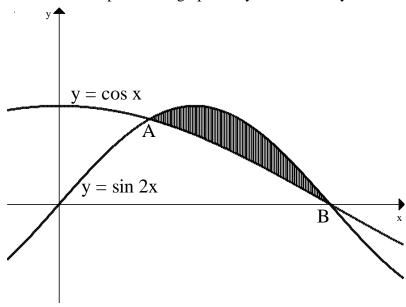
$$y = \frac{1}{(2x-4)^2}$$


Calculate the shaded area.

20. The diagram shows part of the graph of


$$y = \frac{1}{\sqrt{4x - 3}}$$

Calculate the shaded area.



21. The diagram shows part of the graph of $y = 3\sin 4x$.

Calculate the shaded area.

22. The diagram below shows part of the graphs of $y = \sin 2x$ and $y = \cos x$.

- (a) Find the x-coordinates of A and B.
- (b) Calculate the shaded area.