Logarithms - Graphs/Exponential Growth

1. The diagram shows part of the graph of $y=\log _{3} x$.
(a) Find the values of a and b.
(b) Sketch the graph of $y=\log _{3}(x+1)-3$.

2. The diagram shows part of the graph of $\mathrm{y}=\log _{2} \mathrm{x}$.
(a) Find the value of a.
(b) Sketch the graph of $\mathrm{y}=\log _{2} \mathrm{x}-4$.
(c) Sketch the graph of $\mathrm{y}=\log _{2} 8 \mathrm{x}$.

3. The diagram shows part of the graph of $\mathrm{y}=\log _{5} \mathrm{x}$.
(a) Find a and b.
(b) Sketch the graph of $\mathrm{y}=\log _{5} 5 \mathrm{x}$.
(c) Sketch the graph of $y=\log _{5} \mathrm{x}^{2}$
(d) Sketch the graph of $\mathrm{y}=\log _{5} \frac{1}{\mathrm{x}}$.

4. The diagram shows part of the graph of $\mathrm{y}=\log _{4} \mathrm{x}$.
(a) Find a.
(b) Sketch the graph of $\mathrm{y}=\log _{4} 4 \mathrm{x}$.
(c) Sketch the graph of $y=\log _{4} x^{3}$

5. The diagram shows part of the graph of $y=\log _{a} x$.
(a) Determine the value of a.
(b) Sketch the graph of $y=\log _{a} 9 x^{2}$
(c) Sketch the graph of $y=\log _{a} \frac{1}{x}$.

6. The diagram shows the graph of $y=\log _{b}(x+a)$.

Find the values of a and b .

7. The diagram shows the graph of $y=\log _{b}(x+a)$.

Find a and b .

8. The diagram shows the graph of $\mathrm{y}=\operatorname{alog}_{3}(\mathrm{x}-\mathrm{b})$.

Find a and b .

9. The diagram shows the graph of $y=4 \log _{9}(2 x-10)$.

Find the coordinates of A and B.

10. The number of bacteria of a particular strain is given by $B(t)=45 e^{1.5 t}$, where t is the time in hours.
(a) How many bacteria are there at time zero?
(b) How long will it take for the number of bacteria to treble?
11. A radioactive material has mass m, at time t years, given by $m=m_{0} e^{-0.02 t}$, where m_{o} is the original mass.
(a) If the original mass is 500 g , find the mass after 25 years.
(b) Find the percentage of the material left after 10 years.
12. For a radioactive substance $A=A_{0} e^{-k t}$, where A_{0} is the original mass and t is the time in minutes. In 5 minutes, 20 g of this substance is reduced to 16 g .
(a) Find k to 2 significant figures.
(b) Find the half life of this substance (the time taken for the amount of the substance to fall by half).
13. For a radioactive substance the mass at time t years is given by $m=m_{0} e^{-0.02 t}$ where m_{o} is the original mass.
(a) If the original mass is 600 g find the mass after 10 years.
(b) Find the half life of this substance.
14. A radioactive substance is defined by $M=M_{0} e^{-k t}$, where M_{0} is the original mass and M is the mass after t years. Experiments have shown that $\mathrm{M}=0.8 \mathrm{M}_{\mathrm{o}}$ after 3 years.
(a) Find the value of k.
(b) Find the percentage reduction in mass after 20 years.

