$\underline{\text { Scalar product }}$

1. A is the point $(4,3,5), \mathrm{B}$ is $(1,0,-4)$ and C is $(2,2,-5)$.

Show that angle $\mathrm{ABC}=90^{\circ}$.
2. P, Q and R are the points $(3,1,2),(9,2,4)$ and $(1,5,6)$ respectively.

Show that the triangle $P Q R$ is right-angled at P.
3. $\mathbf{u}=3 \mathbf{i}-2 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{v}=4 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$.

Show that the vectors \mathbf{u} and \mathbf{v} are perpendicular.
4. $\mathbf{u}=\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}4 \\ 2 \\ 1\end{array}\right)$
(a) Find the vectors $2 \mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$
(b) Show that the vectors $2 \mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ are perpendicular.
5. (a) A is the point $(2,1,-1)$ and B is $(5,7,11)$. C divides $A B$ in the ratio $2: 1$. Find the coordinates of C .
(b) D is the point $(6,6,6)$. Show that the vectors $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{CD}}$ are perpendicular.
6. (a) P is the point $(1,2,-4)$ and Q is $(6,-3,6)$. $\mathrm{PR}: \mathrm{RQ}$ is $3: 2$. Find the coordinates of R.
(b) T is the point $(6,-3.0)$.

Show that PQ and RT are perpendicular.
7. A is the point $(-2,2,0)$ and B is $(13,-8,20)$.
(a) C divides AB in the ratio 2:3. Find the coordinates of C .
(b) D has coordinates $(1, \mathrm{k}, 9)$.

Given DC is perpendicular to AB , find k .
8. (a) A and B are the points $(1,2,-1)$ and $B(2,0,-4)$.

Given $\mathrm{AC}=3 \mathrm{AB}$, find the coordinates of C .
(b) D is the point $(10,-4,-8)$.

Show that AB and CD are perpendicular.
9. For vectors \mathbf{p} and \mathbf{q} calculate $\mathbf{q} \cdot(\mathbf{q}+\mathbf{p})$ when $|\mathbf{p}|=3$ and $|\mathbf{q}|=4$.

10. In the right-angled isosceles triangle opposite $|\mathbf{a}|=1$.

Calculate $\mathbf{a} .(\mathbf{a}+\mathbf{b}+\mathbf{c})$.

11. In the diagram $|\mathbf{a}|=2 \sqrt{3}$ and $|\mathbf{b}|=5$.
Calculate (i) a.a
(ii) $\mathbf{b} . \mathbf{b}$
(iii) $(\mathbf{a}+2 \mathbf{b}) \cdot(\mathbf{a}+\mathbf{b})$

12. The diagram shows the vectors \mathbf{a} and \mathbf{b}.

If $|\mathbf{a}|=5$ and $|\mathbf{b}|=4$ and $\mathbf{a} \cdot(\mathbf{a}+\mathbf{b})=36$,
Find the size of angle θ.

13. Two vectors \mathbf{u} and \mathbf{v} are such that $|\mathbf{u}|=2$ and $|\mathbf{v}|=6$.

Given that $2 \mathbf{u} \cdot(\mathbf{u}+\mathbf{v})=-4$, show that angle $\theta=120^{\circ}$.

14. \mathbf{u} and \mathbf{v} are vectors given by $\mathbf{u}=\left(\begin{array}{l}\mathrm{k}^{3} \\ 1 \\ k+2\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}1 \\ 3 \mathrm{k}^{2} \\ -1\end{array}\right)$, where $\mathrm{k}>0$.
(a) If $\mathbf{u} \cdot \mathbf{v}=1$, show that $\mathrm{k}^{3}+3 \mathrm{k}^{2}-\mathrm{k}-3=0$
(b) Show that $(\mathrm{k}+3)$ is a factor of $\mathrm{k}^{3}+3 \mathrm{k}^{2}-\mathrm{k}-3$ and hence factorise $\mathrm{k}^{3}+3 \mathrm{k}^{2}-\mathrm{k}-3$ fully.
(c) Deduce the only possible value of k .
(d) The angle between \mathbf{u} and \mathbf{v} is θ. Find the exact value of $\cos \theta$.

