Scalar product

- 1. A is the point (4,3,5), B is (1,0,-4) and C is (2,2,-5). Show that angle $ABC = 90^{0}$.
- 2. P, Q and R are the points (3,1,2), (9,2,4) and (1,5,6) respectively. Show that the triangle PQR is right-angled at P.
- 3. u = 3i 2j 4k and v = 4i 2j + 4k.

Show that the vectors \mathbf{u} and \mathbf{v} are perpendicular.

4.
$$\mathbf{u} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$.

- (a) Find the vectors $2\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$
- (b) Show that the vectors $2\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$ are perpendicular.
- 5. (a) A is the point (2,1,-1) and B is (5,7,11). C divides AB in the ratio 2:1. Find the coordinates of C.
 - (b) D is the point (6,6,6). Show that the vectors AB and CD are perpendicular.
- 6. (a) P is the point (1,2,-4) and Q is (6,-3,6). PR:RQ is 3:2. Find the coordinates of R.
 - (b) T is the point (6,-3.0). Show that PQ and RT are perpendicular.
- 7. A is the point (-2,2,0) and B is (13,-8,20).

(a) C divides AB in the ratio 2:3. Find the coordinates of C.

- (b) D has coordinates (1,k,9). Given DC is perpendicular to AB, find k.
- 8. (a) A and B are the points (1,2,-1) and B(2,0,-4). Given AC = 3AB, find the coordinates of C.
 - (b) D is the point (10,-4,-8). Show that AB and CD are perpendicular.
- 9. For vectors \mathbf{p} and \mathbf{q} calculate $\mathbf{q} \cdot (\mathbf{q} + \mathbf{p})$ when $|\mathbf{p}| = 3$ and $|\mathbf{q}| = 4$.

10. In the right-angled isosceles triangle opposite $|\mathbf{a}| = 1$.

11. In the diagram $|\mathbf{a}| = 2\sqrt{3}$ and $|\mathbf{b}| = 5$.

(ii) **b.b**

Calculate (i) **a.a**

Calculate $\mathbf{a.}(\mathbf{a} + \mathbf{b} + \mathbf{c})$.

b

12. The diagram shows the vectors **a** and **b**. If |a| = 5 and |b| = 4 and a.(a + b) = 36, Find the size of angle θ .

a

14. **u** and **v** are vectors given by $\mathbf{u} = \begin{pmatrix} k^3 \\ 1 \\ k+2 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 1 \\ 3k^2 \\ -1 \end{pmatrix}$, where k > 0.

- (a) If **u.v** = 1, show that $k^3 + 3k^2 k 3 = 0$
- (b) Show that (k + 3) is a factor of $k^3 + 3k^2 k 3$ and hence factorise $k^3 + 3k^2 - k - 3$ fully.
- (c) Deduce the only possible value of k.
- (d) The angle between **u** and **v** is θ . Find the exact value of $\cos \theta$.

Given that $2\mathbf{u} \cdot (\mathbf{u} + \mathbf{v}) = -4$, show that angle $\theta = 120^{\circ}$.