<u>The Chain Rule</u>

1. Differentiate

(a)
$$y = (x + 6)^3$$
 (b) $f(x) = (x - 1)^4$ (c) $f(x) = \frac{1}{x + 5}$

(d)
$$y = \frac{2}{x-4}$$
 (e) $y = \frac{1}{(x+1)^3}$ (f) $f(x) = \frac{4}{(x-2)^4}$

(g) $y = \frac{1}{\sqrt{x+5}}$ (h) $f(x) = \frac{2}{\sqrt{x-2}}$ (i) $y = (4x+2)^3$

(j)
$$f(x) = (2x - 1)^4$$
 (k) $y = \frac{1}{(3x - 4)^2}$ (l) $y = \frac{2}{(2x - 4)^3}$

(m) $y = \frac{1}{\sqrt{4x - 3}}$ (n) $y = \frac{6}{\sqrt{2x + 5}}$ (o) $f(x) = \frac{4}{\sqrt[3]{6x + 5}}$

(p)
$$y = \frac{10}{\sqrt[5]{(3x-2)^2}}$$
 (q) $f(x) = (x^2+3)^3$ (r) $y = 2(x^4-1)^3$

- 2. Find the equation of the tangent to the curve $y = (2x 1)^3$ at the point where x = 1.
- 3. Find the equation of the tangent to the curve $f(x) = \frac{4}{\sqrt{3x+1}}$ at the point where x = 1.
- 4. A tangent to the curve $y = \frac{1}{(2x-5)^3}$ has gradient -6. Find the point of contact.
- 5. A curve has equation $y = \frac{-25}{x+3}$. A tangent to this curve is parallel to the line y = x. Find the points of contact.
- 6. Find the coordinates of the stationary point of $y = (3x 6)^3$ and determine its nature.
- 7. A curve has equation $f(x) = (2x^2 8)^2$. Find the coordinates of the stationary points of f(x) and determine their nature.