Vectors in 3-dimensions have an x, y and z coordinate.
\mathbf{x}-coordinate: along $\quad \mathbf{y}$-coordinate: in (or out) z-coordinate: up (or down)

For example the point $\mathrm{A}(3,4,6)$ will be 3 along, 4 in and 6 up.

Note: All rules that are true for 2-dimensional coordinates are also true for 3-dimensional coordinates.

Examples:

1. If $\mathbf{a}=\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{r}-4 \\ 0 \\ 2\end{array}\right)$ then
(i) $4 \mathbf{a}=\left(\begin{array}{r}12 \\ -4 \\ 8\end{array}\right)$
(ii) $1 / 2 \mathbf{b}=\left(\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right)$
(iii) $2 \mathbf{a}-3 \mathbf{b}=\left(\begin{array}{l}18 \\ -2 \\ -2\end{array}\right)$

$$
\text { (iv) } \begin{aligned}
|2 \mathrm{a}-3 \mathrm{~b}|^{2} & =18^{2}+-2^{2}+-2^{2} \\
& =342 \\
|2 \mathrm{a}-3 \mathrm{~b}| & =\sqrt{342} \\
& =\sqrt{9 \times 38}=3 \sqrt{38}
\end{aligned}
$$

2. $\left(\begin{array}{c}\mathrm{p} \\ \mathrm{q} \\ \mathrm{r}\end{array}\right)+\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)$ gives $\left(\begin{array}{c}\mathrm{p} \\ \mathrm{q} \\ \mathrm{r}\end{array}\right)=\left(\begin{array}{c}-2 \\ -5 \\ 1\end{array}\right)$

Position Vectors

The position vector of a point is the vector from an origin to that point. i.e. If A has coordinates $(3,1,4)$ and B is $(5,3,9)$
the position vector of A is $\mathbf{a}=\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)$ and of B is $\mathbf{b}=\left(\begin{array}{l}5 \\ 3 \\ 9\end{array}\right)$

Note: The vectors $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{BA}}$ can be found as

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}} & \overrightarrow{\mathrm{BA}} & =\overrightarrow{\mathrm{BO}}+\overrightarrow{\mathrm{OA}} \\
& =-\mathbf{a}+\mathbf{b} & & =-\mathbf{b}+\mathbf{a} \\
& =\mathbf{b}-\mathbf{a} & & =\mathbf{a}-\mathbf{b} \\
& =\left(\begin{array}{l}
5 \\
3 \\
9
\end{array}\right)-\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right) & & =\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)-\left(\begin{array}{l}
5 \\
3 \\
9
\end{array}\right) \\
& =\left(\begin{array}{l}
2 \\
2 \\
5
\end{array}\right) & & =\left(\begin{array}{c}
-2 \\
-2 \\
-5
\end{array}\right)
\end{aligned}
$$

This is the most important rule that you will use in vectors.

$$
\overrightarrow{\mathrm{AB}}=\mathbf{b}-\mathbf{a} \quad \overrightarrow{\mathrm{CD}}=\mathbf{d}-\mathbf{c} \quad \overrightarrow{\mathrm{PQ}}=\mathbf{q}-\mathbf{p} \quad \overrightarrow{\mathrm{UW}}=\mathbf{w}-\mathbf{u}
$$

