1. $\mathbf{p}=\binom{3}{2}$ and $\mathbf{q}=\binom{6}{-4}$
(a) Sketch the vectors \mathbf{p} and \mathbf{q}.
(b) Sketch the vectors $-\mathbf{p}$ and $-\mathbf{q}$.
(c) Given $\mathbf{u}=\mathbf{p}+\mathbf{q}$, sketch the vector \mathbf{u}.
(d) Given $\mathbf{v}=\mathbf{p}-\mathbf{q}$, sketch the vector \mathbf{v}.
2. $\mathbf{a}=\binom{5}{-2}$ and $\mathbf{b}=\binom{-7}{-4}$
(a) Sketch the vectors \mathbf{a} and \mathbf{b}.
(b)Given $\mathbf{u}=\mathbf{a}+\mathbf{b}$, sketch the vector \mathbf{u}.
(c) Given $\mathbf{v}=\mathbf{a}-\mathbf{b}$, sketch the vector \mathbf{v}.
3. $\mathbf{a}=\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{c}6 \\ -8 \\ 0\end{array}\right)$.

Find
(a) $3 \mathbf{a}$
(b) $-\mathbf{b}$
(c) $2 \mathbf{a}+3 \mathbf{b}$
(d) $4 \mathbf{b}-\mathbf{a}$
(e) $-1 / 2 \mathbf{b}$
(f) $|\mathbf{b}|$
(g) $|2 \mathbf{a}|$
(h) $|\mathbf{b}+2 \mathbf{a}|$
4. Find \mathbf{p} and \mathbf{q} in each equation below
(a) $\binom{\mathbf{p}}{\mathbf{q}}+\binom{2}{-1}=\binom{6}{4}$
(b) $\binom{\mathbf{p}}{\mathbf{q}}-\binom{3}{-4}=\binom{8}{-4}$
(c) $\binom{-3}{1}-\binom{\mathbf{p}}{\mathbf{q}}=3\binom{-2}{-1}$
5. Find \mathbf{p}, \mathbf{q} and \mathbf{r} in each of the following
(a) $\left(\begin{array}{l}\mathbf{p} \\ \mathbf{q} \\ \mathbf{r}\end{array}\right)+\left(\begin{array}{c}3 \\ -2 \\ 5\end{array}\right)=\left(\begin{array}{l}6 \\ 4 \\ 1\end{array}\right)$
(b) $\left(\begin{array}{l}\mathbf{p} \\ \mathbf{q} \\ \mathbf{r}\end{array}\right)+2\left(\begin{array}{c}1 \\ -4 \\ 0\end{array}\right)=\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right)$
6. A is the point $(2,1,-2)$ and B is the point $(0,-3,4)$.
(a) Write down the components of \mathbf{a} and \mathbf{b}, the position vectors of A and B.
(b) Calculate (i) $-2 \mathbf{a}+\mathbf{b}$
(ii) $|-2 \mathbf{a}+\mathbf{b}|$
(c) Find the vector $\overrightarrow{\mathrm{AB}}$
7. P is the point $(1,-1,2), \mathrm{Q}$ is $(2,0,-5)$ and R is $(1,1,0)$.
(a) Write down the components of \mathbf{p}, \mathbf{q} and \mathbf{r} the position vectors of P, Q and R .
(b) Find the vectors
(i) $\overrightarrow{\mathrm{QP}}$
(ii) $\overrightarrow{Q R}$
(iii) $\overrightarrow{\mathrm{PR}}$
8. M is the point $(2,3,-5), \mathrm{N}$ is $(1,1,0)$ and R is $(-4,2,-2)$.
(a) Write down the components of \mathbf{m}, \mathbf{n} and \mathbf{r} the position vectors of M, N and R .
(b) Find the vectors
(i) $\overrightarrow{\mathrm{MN}}$
(ii) $\overrightarrow{\mathrm{RN}}$
(iii) $\overrightarrow{M R}$
9. PQRS is a parallelogram with vertices $\mathrm{P}(3,4,0), \mathrm{Q}(7,6,-3)$ and $\mathrm{R}(8,5,2)$.

Find the coordinates of S. (Hint: $\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{SR}}$).
10. A is the point $(2,1,-6)$, B is $(3,1,-9)$ and C is $(0,1,6)$.

Given $\overrightarrow{\mathrm{AD}}=\frac{2}{3} \overrightarrow{\mathrm{BC}}$, find the coordinates of D .
11. P is the point $(-4,2,2), \mathrm{Q}$ is $(-1,8,14)$ and R is $(-5,2,10)$.

Given $\overrightarrow{\mathrm{PQ}}=\frac{3}{4} \overrightarrow{\mathrm{RS}}$, find the coordinates of S .
12. (a) Calculate the magnitude of the vector $\mathbf{u}=\binom{3}{4}$.
(b) Find a unit vector parallel to the vector \mathbf{u}.
13. (a) Calculate the magnitude of the vector $\mathbf{w}=\left(\begin{array}{c}-6 \\ 2 \\ 3\end{array}\right)$
(b) Find a unit vector parallel to \mathbf{w}.
14. (a) Calculate $|\mathbf{a}|$ where $\mathbf{a}=\left(\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right)$
(b) Find a unit vector parallel to a.
15. The diagram shows a regular hexagon.
(i) Write down another vector equal to
(a) $\overrightarrow{\mathrm{AB}}$
(b) $\overrightarrow{\mathrm{CD}}$
(ii) Find a vector equal to
(a) $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$
(b) $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CD}}$
(c) $\overrightarrow{\mathrm{FE}}+\overrightarrow{\mathrm{ED}}$
(d) $\overrightarrow{\mathrm{FA}}+\overrightarrow{\mathrm{ED}}$
(e) $\overrightarrow{\mathrm{ED}}+\overrightarrow{\mathrm{DC}}+\overrightarrow{\mathrm{EF}}$
(f) $\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{DC}}$

16. Use the diagram opposite to name the vector that represents
(a) $\mathbf{p}-\mathbf{r}$
(b) $\mathbf{r}-\mathbf{p}$
(c) $\mathbf{t}-\mathbf{q}$
(d) $\mathbf{s}-\mathbf{t}$
(e) $\mathbf{p}-\mathbf{r}-\mathbf{q}$
(f) $\mathbf{t}+\mathbf{r}-\mathbf{p}$
(g) $\mathbf{s}-\mathbf{p}+\mathbf{q}$

17. The diagram shows a regular octagon.
(a) Write down another vector equal to
(i) $\overrightarrow{\mathrm{WP}}$
(ii) $\overrightarrow{\mathrm{WV}}+\overrightarrow{\mathrm{VU}}$
(iii) $\overrightarrow{\mathrm{WP}}+\overrightarrow{\mathrm{SR}}+\overrightarrow{\mathrm{RQ}}$
(iv) $\overrightarrow{\mathrm{SR}}-\overrightarrow{\mathrm{ST}}$

18. The diagram shows a cuboid ABCD EFGH.
(a) Express in terms of \mathbf{u}, \mathbf{v} and \mathbf{w}.
(i) $\overrightarrow{\mathrm{DC}}$
(ii) $\overrightarrow{\mathrm{ED}}$
(iii) $\overrightarrow{\mathrm{FH}}$
(iv) $\overrightarrow{\mathrm{HA}}$
(b) Express in terms of ABCD EFGH

(i) $\mathbf{u}+\mathbf{v}$
(ii) $\mathbf{u}-\mathbf{w}$
(iii) $\mathbf{w}-\mathbf{u}+\mathbf{v}$
19. In the trapezium $A B=2 D C$ and $A B$ is parallel to $D C$. In terms of \mathbf{u} and \mathbf{v}, write down the vectors
(a) $\overrightarrow{\mathrm{AB}}$
(b) $\overrightarrow{\mathrm{AC}}$
(c) $\overrightarrow{\mathrm{BC}}$
(d) $\overrightarrow{\mathrm{AN}}$

