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FORMULAE LIST
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FORMULAE LIST (continued)

De Moivre’s theorem
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MARKS
Total marks — 65

Attempt ALL questions

 1. Express  
x x
x x

 


2

2

3 3 5

5
 in partial fractions.

 2. Find the exact value of 
3

0

4
2 1

dx
x 




.

 3. Use the Euclidean algorithm to find integers a and b such that

634 87 1a b  .

 4. Use integration by parts to find   
1
22 2 7x x dx  .

 5. Matrix A is given by

1 3 1

2 3 ,

18 7

A k
k

 
   
  

 where .k

Find the values of k so that the matrix A is singular.

 6. The first three terms of a sequence are defined algebraically by

5, 3 2, 5 1x x x    , where x.

(a) Show that these three terms form the start of an arithmetic sequence.

(b) Find a simplified expression for the 15th term of this sequence.

(c) Given that the sum of the first 20 terms of this sequence is 1130, find the value 
of x.
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MARKS

 7. The complex number 3z i   is a root of 2 6 0z z a   , where a is a real number.

(a) State the second root of 2 6 0z z a   .

(b) Hence, or otherwise, find the value of a.

The expression 2 6z z a   is a factor of 3 2 20z z z b   , where b is a real number.

(c) Find the value of b.

 8. (a) Differentiate lnx x x  with respect to x.

(b) Hence find the general solution of the differential equation

ln xdy y x x
dx

  .

 9. The matrix A is given by 
3 2

=
0 1

A 
 

 
 

.

Prove by induction that

3 1 3

0 1

n n
nA

 
  
 

, n N  .

 10. Solve the differential equation

sin cos
2

2
4 4 9 13

d y dy y x x
dx dx

   

given that 5y   and 0
dy
dx

  when 0x  .

 11. A curve defined parametrically has the following properties:

• 1tan 2x t

•  26 1 4
dy t t
dx

 

• 5y   when 1t  .

Find y in terms of t.
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MARKS

 12. Let cos sinz θ i θ  .

(a) Use de Moivre’s theorem to state an expression for 4z .

(b) State and simplify the binomial expansion of  cos sin 4θ i θ .

(c) Hence show that:

 (i) cos cos cos4 24 8 8 1θ θ θ   .

 (ii) sin cot 4θ θ can be written in terms of cosθ only.
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MARKS
 13. A security spotlight is situated 10 metres from a straight fence. The spotlight rotates 

at a constant speed and makes one full revolution every 12 seconds.

The situation at time t seconds is modelled in the diagram below, where:

• L is the position of the spotlight

• G is the point on the fence nearest to the spotlight

• P is the position where the light hits the fence

• θ is the angle between LG and LP

• x is the distance in metres from G to P.

fence

x m

G P

10 m beam of light

θ

spotlight (L)

(a) Show that:

 (i) 
π
6

dθ
dt

  radians per second

 (ii) 
π sec25
3

dx θ
dt

  metres per second.

(b) Prove that tan sec2 21 θ θ  .

(c) Hence, or otherwise, find the exact value of 
dx
dt

 when P is 5 metres from G.

[END OF QUESTION PAPER]

1

4

1

3



page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE


	Paper 2 Front cover
	Paper 2 FORMULAE LIST
	Paper 2 FORMULAE LIST (continued)
	Paper 2 Questions 1 to 6
	Paper 2 Questions 7 to 11
	Paper 2 Question 12
	Paper 2 Question 13

